
SCION:
A Secure Internet Architecture

Adrian
Perrig

Pawel
Szalachowski

Raphael M.
Reischuk

Laurent
Chuat

ETH Zurich
30th August, 2017

ii

iii

To Miyoung,
Thank you for your unwavering support.
Love, forever!

Adrian

To Henio,
For all these sleepless nights.

Paweł

To my family and those
who supported me along my way.

Raphael

To Manon,
For your patience and encouragement.

Laurent

Contents

Foreword xi

Preface xv

I Overview 1

1 Introduction 3
1.1 Today’s Internet . 3
1.2 Goals of a Secure Internet Architecture 8
1.3 Future Internet Architectures 13

2 The SCION Architecture 17
2.1 Control Plane . 21
2.2 Data Plane . 25
2.3 Security Aspects . 27
2.4 Use Cases . 31
2.5 Incentives for Stakeholders 34
2.6 Deployment . 36
2.7 Extensions . 39
2.8 Main Contributions . 39

3 Isolation Domains (ISDs) 43
3.1 Why Isolation? . 43
3.2 The ISD Core . 47
3.3 Coordination Among ISDs 48
3.4 Name Resolution . 48
3.5 ISD Governance Models . 51
3.6 Nested Isolation Domains 56

II SCION in Detail 59

4 Authentication Infrastructure 61
4.1 Overview . 61
4.2 Control-Plane Authentication 68
4.3 Name Authentication . 83
4.4 End-Entity Authentication 86

vii

Contents

5 ISD Coordination 93
5.1 Motivation and Objectives 94
5.2 Announcing and Discovering New ISDs 97
5.3 Local Resolution of Conflicts 100

6 Name Resolution 101
6.1 Background . 102
6.2 Name Resolution Architecture 104
6.3 Naming Information Model 106
6.4 The RAINS Protocol . 114
6.5 The Naming Consistency Observer (NCO) 116

7 Control Plane 119
7.1 Path Exploration and Registration 119
7.2 Path Lookup . 132
7.3 Secure Path Revocation . 138
7.4 Failure Resilience and Service Discovery 146
7.5 AS-Level Anycast Service 153
7.6 SCION Control Message Protocol (SCMP) 155
7.7 Time Synchronization . 159

8 Data Plane 161
8.1 Path Format . 162
8.2 Creation of Forwarding Paths 164
8.3 Efficient Path Construction 174

9 Host Structure 179
9.1 SCION Dispatcher . 179
9.2 SCION Daemon . 183
9.3 Transmission Control Protocol (TCP/SCION) 185
9.4 SCION Stream Protocol (SSP) 188

10 Deployment and Operation 191
10.1 ISP Deployment . 191
10.2 End-Domain Deployment 199
10.3 The SCION-IP Gateway (SIG) 201
10.4 How to Try Out SCION . 211
10.5 SCION AS Management Framework 215
10.6 Deploying a New AS . 218
10.7 The SCIONLab Experimentation Environment 220
10.8 Example: Life of a SCION Data Packet 223
10.9 SCION Path Policy . 230

viii

Contents

III Extensions 241

11 SIBRA 243
11.1 Motivation and Introduction 244
11.2 Goals and Adversary Model 245
11.3 Design Overview . 247
11.4 SIBRA Core Paths . 250
11.5 SIBRA Steady Paths . 259
11.6 SIBRA Ephemeral Paths . 261
11.7 Priority Traffic Monitoring and Policing 268
11.8 Use Cases . 272
11.9 Discussion . 273
11.10 Further Reading . 276

12 OPT and DRKey 279
12.1 Introduction . 280
12.2 OPT Problem Definition . 281
12.3 OPT Design Overview . 283
12.4 OPT Protocol Description 286
12.5 Dynamically Recreatable Keys (DRKey) 291

IV Analysis and Evaluation 299

13 Security Analysis 301
13.1 Security Goals . 302
13.2 Threat Model . 304
13.3 Software Security . 305
13.4 Control-Plane Path Manipulation 307
13.5 Data-Plane Path Manipulation 312
13.6 Censorship and Surveillance 318
13.7 Attacks Against Availability 320
13.8 Absence of Kill Switches 325
13.9 Resilience to Path Hijacking 327
13.10 Summary . 330

14 Power Consumption 331
14.1 Modeling Power Consumption of an FIA Router 332
14.2 Simulation . 334

V Specification 339

15 Packet and Message Formats 341
15.1 SCION Packet . 341

ix

Contents

15.2 Control Plane . 355
15.3 PCB and Path Segment . 356
15.4 Path Management Messages 361
15.5 PKI Interactions . 362
15.6 SCMP Packet . 363

16 Configuration File Formats 369
16.1 Trust Root Configuration 369
16.2 AS Certificates . 370
16.3 Discovery Service Configuration 374
16.4 Router, Server, and End-Host Configuration 376

17 Cryptographic Algorithms 381
17.1 Algorithm Agility . 381
17.2 Symmetric Primitives . 384
17.3 Asymmetric Primitives . 385
17.4 Post-Quantum Cryptography 386

Bibliography 387

Frequently Asked Questions 409

Glossary 417

Abbreviations 421

Index 423

x

Foreword

VIRGIL GLIGOR (CARNEGIE MELLON UNIVERSITY)

Despite having worked with Adrian Perrig for a few years at Carnegie Mellon
University’s CyLab, where he embarked on the task of developing a secure
architecture for the Internet, I had had no in-depth exposure to SCION until I
attended a presentation he gave at Singapore Management University in late
2010. Entitled “SCI-FI: Secure Communication Infrastructure for a Future
Internet,” his talk described the early project that was to become SCION. The
audience reaction was predictable and all too familiar: you can’t change the
Internet; its foundation is immutable!

But in fact it had been clear for a long time that the Internet design had
to change, as security cracks had gradually been appearing in its foundation
since its early days. By the mid-1980s, it was obvious that the denial-of-
service problem was not effectively addressed by Internet protocols. By the
mid-90s, it was clear that BGP was prone to cascading instability, and by
the mid-2000s distributed denial of service had become a predictable Internet
“feature.” Other security issues arose, such as prefix hijacking, IP source address
spoofing, and packet-content alteration. Even when cryptographic protocols,
such as SSL/TLS, were finally applied in response to e-commerce pressure,
their worldwide deployment was more an exception than the rule. Besides, the
public-key infrastructure (PKI) supporting SSL/TLS continues to be extremely
fragile. As the Internet has expanded in size and use, security problems have
become increasingly severe: both organized crime and nation states have started
to launch massive attacks for economic or political gain.

Despite repeated wake-up calls for Internet redesign, the response has gener-
ally been something of a “boiling frogs” reaction: the severity of the problems
has continued to increase relentlessly, but perception of the enormous effort re-
quired to solve them has blocked, frustrated and foiled any impulse for redesign
from ground up. Over the past decade, it has become clear that security is a
fundamental problem of Internet design, but it remains a secondary concern. So
against that background, the audience reaction to Adrian Perrig’s 2010 SCI-FI
presentation in Singapore was only to be expected.

Since my first exposure to SCION, I have been impressed with several of
its innovative ideas and new properties. For instance, the concept of isolation

xi

Foreword

domains provides control-plane protection and simplifies construction of PKI
infrastructures due to the natural scoping of trust roots. (Although a concept
similar to that of isolation domains was considered for the initial Internet design,
the focus in that early phase was on getting the network to function at scale
before introducing hierarchical decomposition mechanisms.) SCION’s con-
cepts of transparency and control, which weave through the entire architecture,
result in many desirable properties, e.g., both high-performance and multipath
communication for hosts. Also, cryptographically protected packet-carried
forwarding state brings forwarding-path authorization without incurring any
router-state cost. SCION’s architecture integrates these concepts seamlessly
into a coherent secure system.

This book offers a fascinating view of both the high-level concepts that drive
SCION’s design and its implementation, and it leads the reader to draw some
surprising new conclusions.

Contrary to the common belief that security causes a loss of performance,
several SCION operations are efficient despite performing cryptographic opera-
tions; e.g., SCION packet forwarding can be faster and require less energy than
IP forwarding. This suggests that redesigning the Internet can be rewarding in
more areas than security. I am not aware of any other project that has gone so
deeply and broadly in redesigning an entire secure Internet architecture.

The SCION project contradicts another widely held opinion in demonstrating
that deployment of a new Internet architecture at scale is in fact possible.
This book illustrates the basic ingredients of deployment success: SCION has
provided a multitude of incentives for ISPs and end domains, so that local
deployment can already provide benefits to early adopters. The book also
describes some of SCION’s secret deployment sauce: keep the updates of the
current routing infrastructure of both ISPs and end domains to a minimum,
and reuse the existing intra-domain communication to the maximum extent. It
should not be surprising that (e.g., Swiss) ISPs have already found it possible
to deploy SCION routers in their core infrastructure and develop new services
on it.

Contrary to another common belief, a single Internet architecture can en-
able integrated defenses against multiple types of attacks, as opposed to one
which requires piecemeal solutions. In my opinion, the SCION architecture
is unique in this sense, and this book illustrates the fact through the solutions
it describes to long-standing problems. For example, SCION provides these
unique properties:

• Global security without any global root of trust. This implies that a global
“kill switch,” an unavoidable feature of other secure network architectures,
is not possible in SCION.

• Control-plane functions for secure path withdrawals and control messages.
Although any network can always cryptographically sign messages in an

xii

attempt to achieve secure operation, SCION secures the control plane in
a very efficient way while enabling high-speed router operation.

• Global resource allocation without requiring per-flow or per-computation
fairness mechanisms. This stands in contrast to the current Internet
design, in which these mechanisms enable massive DDoS attacks by
commercially available botnets. The book shows how SCION lever-
ages its global resource allocation architecture to offer a range of DDoS
countermeasures.

• Practical multipath architecture without having to rely on multiple com-
munication media and heterogeneous routing interfaces; e.g., cellular
or WiFi connection on cell phones. SCION is currently the only ar-
chitecture I am aware of that provides general homogeneous multipath
communication.

• A robust TLS PKI design with a very limited attack surface; i.e., several
independent entities need to be compromised for an attack to be launched.
In contrast, the current TLS PKI has a huge attack surface; e.g., if a single
key is compromised of the thousand or more that are trusted to sign
domain certificates, an adversary can compromise any TLS-protected
channel.

So can the Internet be changed and secured from the ground up? This book
provides a beacon of hope, proposing that the seemingly unsolvable problem
of changing the Internet can in fact be solved. With the open-source SCION
implementation and a readily available testbed, researchers can experiment on
a firmer network foundation and develop solutions to today’s pressing security
problems. It is only through hands-on experiments on common platforms
like SCION that we can build a new Internet, one that we can rely on with
confidence. Let’s embrace it!

xiii

Preface

ADRIAN PERRIG

The SCION project started in Summer 2009 at Carnegie Mellon University
(CMU), when we began meeting weekly with Haowen Chan, Hsu-Chun Hsiao,
and Xin Zhang to consider what a secure inter-domain Internet architecture
would look like if we could start from a clean slate. The goal was to create an
architecture that offered high availability and security for basic point-to-point
communication — which other architectures that provide content-centric or
mobility-centric properties could build upon.

The project was arduous, because for every approach we came up with, we
saw at least two new problems. After several months of meetings, all we had
was many pages filled with requirements that the architecture should meet,
but no approach to satisfy even a major subset of the requirements. As time
went on, the project seemed to be increasingly hopeless. But our perseverance
paid off. In Summer of 2010 the basic ideas of beaconing and the creation of
end-to-end paths through path-segment combination emerged. Although we
would have been happy with any approach that satisfied half of the requirements,
our basic approach appeared to meet most of our requirements. Delighted with
our discovery, we accelerated the pace of the project. We were encouraged
by the fact that our architecture could elegantly address every issue we came
up with. We called it the Secure Communication Infrastructure for a Future
Internet (SCI-FI).

In Fall 2010, Dave Andersen and Geoff Hasker joined the project and we
started writing a paper. Many people took issue with the designation SCI-FI,
so we went with Geoff Hasker’s suggestion of SCION — despite its rather
presumptuous meaning of “heir to the throne” — as an acronym for scalability,
control, and isolation on next-generation networks. Our paper quickly took
shape, and was accepted for publication at the IEEE Symposium on Security and
Privacy in 2011. Oddly, the paper was placed in the “Secure Information Flow
and Information Policies” session, which usually hosts papers of a different
type. Unfazed, Xin Zhang gave a strong presentation and the work was well
received.

Buoyed by the early promise of the project, we continued working on SCION
and convinced the eXpressive Internet Architecture (XIA) team at CMU that

xv

Preface

SCION was a worthwhile choice for host-to-host communication. So initially,
SCION developed in the context of XIA, which helped support the early re-
search.

The project developed along two major axes: research and implementa-
tion. The early research results leveraged SCION for DDoS defense [114]
and anonymous communication [113]. To achieve source authentication and
path validation, we designed OPT [132], and performed a formal verification
of the protocol [263]. With the goal of producing a stronger public-key in-
frastructure (PKI) for SCION, the Accountable Key Infrastructure (AKI) was
developed [133].

The initial implementation effort started with the help of several student
projects. However, much of the progress was made when Soo-Bum Lee joined
the project and completed a first SCION prototype in 2011, which we continu-
ously improved throughout 2012.

In view of the opportunities offered by ETH Zurich, we built up a new re-
search group around the SCION project in Switzerland. Pawel Szalachowski, a
promising postdoctoral researcher from Poland, joined the group in March 2013
and became the core designer and developer of SCION. Under his guidance,
the SCION prototype and testbed went through several generations of software
and matured into the system that we currently deploy. Much progress was made
when Stephen Shirley joined the group, as he improved numerous aspects of
the system including design and implementation. Jason Lee deserves credit for
his work on the multipath socket and the high-speed router (the latter project
was in collaboration with Takayuki Sasaki who was visiting from NEC). More
recently, Tobias Klausmann and Ercan Ucan joined the developer team, greatly
improving SCION’s infrastructure and deployment. All the hard work has
paid off: in Summer 2016 we started a deployment of SCION routers in the
production networks of Swisscom and SWITCH, two large ISPs in Switzerland,
with several of their customers now engaging in test deployments.

On the research side, many newcomers joined the team at ETH, assisted by
the postdoctoral researchers David Barrera, Raphael Reischuk, and Pawel Sza-
lachowski. With SCION as the core focus of the research group, much progress
was accomplished in many directions, such as PKIs [23, 52, 168, 169, 233–235],
DDoS defense [22, 143], anonymous communication and privacy [49, 51, 153,
156], efficient forwarding [154], fault localization [21], energy analysis [50],
high-speed duplicate detection [155], as well as public-policy and legal as-
pects [26, 194]. Besides the research contributions, Raphael Reischuk suc-
cessfully contributed to outreach and promotion by designing the SCION logo
and creating the SCION website, initiating a newsletter, and giving outreach
presentations to help attract early adopters. Many PhD students contributed
to SCION — for instance Sam Hitz has made several major contributions by
suggesting Python as a base language (to speed up implementation and increase
code clarity), implementing major parts of the (early) SCION core code, and

xvi

designing and implementing the secure link revocation mechanism. Also many
researchers contributed to the project, for instance Virgil Gligor, Yih-Chun Hu,
and members of the XIA project team, who were involved in several research
projects and contributed much feedback and many insights to the project.

Over the past eight years, numerous people helped on the project through
research discussions, feedback on publications, setup and operation of SCION
infrastructure, research projects, and more. We estimate that around 80 people
have so far played a significant role in the project (about 30 people from our
group, about 30 bachelor or master students have completed a semester project
or thesis, and about 20 external collaborators and industry visitors who worked
closely with us). We are very grateful for everyone’s help, without which the
project would not have reached its current status. When adding up the amount
of time researchers and engineers worked on the SCION architecture, we arrive
at approximately 75 person-years of endeavor that has been spent by the end of
2016. Consequently, much thought and deliberation have gone into the design
decisions presented in this book.

When we started the project in 2009, it was mostly security researchers who
agreed on the importance of re-designing the Internet from a security perspec-
tive [27]. However, many events that have occurred since have brought Internet
security to the forefront of awareness: several cases of Internet censorship, the
Snowden revelations, NSA backdoors (e.g., in Juniper routers, standardized
cryptographic algorithms), Internet kill switches, IANA’s stewardship transition
to a multi-stakeholder governance, increasingly large DDoS attacks, attacked
certification authorities, the emergence of quantum computers, etc. Today, In-
ternet security and privacy is a common topic of conversation. In the IETF, the
main body for standardizing Internet protocols, awareness of security concerns
has greatly increased — with an IETF draft stating that pervasive monitoring
by governments constitutes an attack [85]. These events have given impetus to
the SCION project, as it matured during this period and provides solutions to
the exact problems that have moved into public awareness. Consequently, the
SCION architecture goals appear aligned with the public interests and we do
not seem to be swimming against the mainstream goals.

Bob Kahn mentioned that simplicity and elegance were the main reasons
why TCP/IP has lasted as long as it has. When a system is simple and elegant, it
is easy to understand, implement, and maintain. Thus, simplicity and elegance
are important goals in SCION, besides availability, security, scalability, and
efficiency. In the entire architecture, we attempt to minimize complexity to
achieve the desired properties, leveraging well-understood technologies. Unless
they were in line with the approach we deemed best, we avoided the urge to use
“trendy” technologies of the day, such as blockchain or doubly homomorphic
encryption. We hope that the readers will also appreciate the results of our
endeavors to produce a clean-slate re-design of a highly available point-to-point
communication architecture, and that they will join us on our journey towards a
secure Internet.

xvii

Preface

How to Read This Book

This book describes the essential components of the SCION future Internet
architecture prototype (V1.0) including functional specifications of the SCION
network elements (e.g., servers, routers, gateways), communication protocols
among these elements, data structures, and configuration files. In particular, the
book focuses on the specification of a working prototype and additional features
that are not described in academic papers. We highlight contributions that we
believe are particularly important and interesting with a diamond symbol.

The aim of this book is to provide an easy-to-follow introduction to SCION.
To help the reader, it contains a glossary (Page 417) defining important terms
and supplying background information. We indicate terms with a glossary entry
as follows:

glossary term‹

A gray bar in the margin indicates the presence of an example:

This is an example.

We also provide an index (Page 423), a list of abbreviations (Page 421), and
answers to frequently asked questions (Page 409). A comprehensive example
of SCION’s operations is on Page 223 and illustrates the end-to-end communi-
cation between two hosts, including name resolution, path resolution, packet
origination, and packet forwarding. The example provides references to detailed
explanations of the underlying concepts and techniques, and thus serves as a
good starting point for the more technically adept readers.

The book also aims to provide a comprehensive description of the main
design features for achieving a secure Internet architecture. While many of
the detailed design aspects are described in research papers, we have added
relevant details where necessary to understand the important concepts. We have
structured the book in such a way that the technical details gradually increase
as it proceeds: starting with an overview and moving along to the format of
configuration files at the end.

Additional SCION resources (research papers, talks, presentations, source
code, and links to contributing efforts) are available on our web page:

https://www.scion-architecture.net

We also encourage interested readers to sign up to the SCION mailing list
(through the above website). Furthermore, a discussion board for the SCION
community takes questions and offers support regarding the development and
deployment of SCION. As we encounter errors in the book, we will document
them in an errata list on our web page.

xviii

https://www.scion-architecture.net

Acknowledgments

Many people contributed toward this book. Special thanks go to Jeffrey Barnes
for his excellent copy editing, and Ronan Nugent our editor at Springer who
guided us through the publication process. We also thank the following individ-
uals for providing valuable feedback that improved the content of this book (in
alphabetical order):

David Basin ETH Zurich
Jan Boogman Swisscom AG
Srdjan Capkun ETH Zurich
Alexander Gall SWITCH
Virgil Gligor Carnegie Mellon University (CMU)
David Hausheer Technische Universität Darmstadt
Yih-Chun Hu University of Illinois at Urbana-Champaign
Jill Jermyn Columbia University
Burt Kaliski Verisign, Inc.
Ayumu Kubota KDDI Corporation
Jovan Kurbalija Geneva Internet Platform
Heejo Lee Korea University
Simon Leinen SWITCH
René Merz Magnetron Labs
Peter Müller ETH Zurich
Radha Poovendran University of Washington
Timothy Roscoe ETH Zurich
Mark Ryan University of Birmingham
Ankit Singla ETH Zurich
Christoph Sprenger ETH Zurich
Peter Steenkiste Carnegie Mellon University (CMU)
Laurent Vanbever ETH Zurich
David Watrin Swisscom AG

The project was made possible by the generous support of the following
organizations (in alphabetical order):

• CyLab at Carnegie Mellon University;
• ETH Zurich, which provided the majority of funding for the project;
• European Research Council, under the European Union’s Seventh Frame-

work Programme (FP7/2007-2013) / ERC grant agreement 617605;
• Infosec Global, through a contract;
• Institute for Information and Communications Technology Promotion

(IITP), grant funded by the Korean government (MSIP) (No. R0190-
16-2011, Development of Vulnerability Discovery Technologies for IoT
Software Security);

xix

Preface

• Intel Corp., which provided equipment;
• KDDI Corporation, through a gift;
• National Science Foundation (NSF), under awards CCF-0424422 and

CNS-1040801;
• Swisscom AG, through a contract;
• Zurich Information Security and Privacy Center (ZISC), through gifts

from Google, NEC, Open Systems, SIX, and ZKB.

Without these sources of support, the project would not have been possible.
We would like to express our sincere gratitude to all who contributed.

xx

Part I

Overview

1

1 Introduction

DAVID BARRERA, LAURENT CHUAT, ADRIAN PERRIG,
RAPHAEL M. REISCHUK, PAWEL SZALACHOWSKI

The Internet has been successful beyond even the most optimistic expectations.
It permeates and intertwines with almost all aspects of our modern society and
economy. The success of the Internet has created a dependency on communica-
tion as many of the processes underpinning the foundations of modern society
would grind to a halt should communication become unavailable. However,
much to our dismay, the current state of safety and availability of the Internet is
far from commensurate with its importance.

Although we cannot conclusively determine what the impact of a 1-minute,
1-hour, 1-day, or 1-week outage of Internet connectivity on our society would be,
anecdotal evidence indicates that even short outages have a profound negative
impact on governmental, economic, and societal operations. To make matters
worse, the Internet has not primarily been designed for high availability in the
face of malicious actions by adversaries. Recent patches to improve Internet
security and availability have been constrained by the design of the current
Internet architecture. A new Internet architecture should offer availability and
security by design, provide incentives for deployment, and consider economic,
political, and legal issues at the design stage.

In this book, we describe SCION, an inter-domain network architecture
designed to address these issues by providing a fundamental building block:
highly available point-to-point communication. We present SCION’s goals,
design, limitations, specifications, extensions, and the results of several years
of research conducted since the initial publication [266]. But we start, as a
motivation for our work, by reflecting on the current state of the Internet.

1.1 Today’s Internet

Witnessing the fast advancement of Internet-based services, applications, and
technologies, it might seem that the Internet is evolving at a rapid pace. In
reality though, only parts of the protocol stack have changed significantly since
the Internet’s inception. The application and physical layers have adapted to

3

1 Introduction

new needs and trends, but the core protocols have remained mostly the same
for decades. This situation has been referred to as the “Internet Hourglass”,
meaning that a handful of protocols form a thin — and seemingly irreplaceable
— waist in the protocol stack, while both ends of the stack continue to increase
in diversity. In this section, we start by discussing the two core technologies of
the current Internet: the Internet Protocol (IP) [201] and the Border Gateway
Protocol (BGP) [209].

Nobody could have predicted how impressively these protocols would stand
the test of time, as they remained relatively static over the past 25 years. How-
ever, as the Internet continued to expand and needed to accommodate new
uses, numerous issues of the architecture came to light. Since a comprehensive
treatment of the Internet’s problems would require an entire book, in this section
we only present an overview of the salient issues that demonstrate the need for
a new architecture.

1.1.1 The Internet Protocol (IP)

IP is one of the fundamental protocols of the Internet, as it enables the forward-
ing of packets between end hosts. Its first major version (IPv4) was specified in
1981 and extended by IPv6 in 1998 [64] (as of April 2017, IPv6 is estimated to
be used by around 15% of hosts [102]). IP routes packets between a source and
a destination along a single path that is opaque from the end host’s perspective.
To forward packets, end hosts (as well as routers) do not need a complete
path, but only a table to determine the next hop solely based on the destination
address. Neither senders nor receivers can influence the path that their packets
take. This approach is simple, but it also comes with many drawbacks:

• Lack of separation between routing and forwarding: IP packet for-
warding depends on forwarding tables in routers, which change dynami-
cally over time. Hence, a working path can suddenly change in direction
or even break after an update to forwarding tables.

• Lack of transparency and control: Being able to select and verify
the path that packets take is desirable in many situations. End hosts
might want to avoid packets being routed through adversarial or untrusted
networks, or they might want to choose the most suitable path with regard
to a specific metric (e.g., latency or bandwidth). Unfortunately, IP does
not offer such an option. Although loose and strict source routing exist,
these extensions are not commonly supported in today’s networks. It is
also not possible to simultaneously use multiple distinct paths towards
the same destination — even though multipath communication can offer
numerous beneficial properties; as we will demonstrate throughout the
book.

• Stateful routers: IP routers maintain forwarding tables to determine the
next hop of a received packet. This basic requirement has undesirable

4

1.1 Today’s Internet

consequences. Performing a route table lookup for every packet is a time-
consuming operation. Therefore, high-performance networking equip-
ment typically relies on ternary content-addressable memory (TCAM)
hardware, which is expensive and energy-intensive. Moreover, the con-
stantly growing size of forwarding tables poses a problem for routers, as
the storage capacity of TCAM hardware is limited. Routers that keep
state for network information can also suffer from denial-of-service (DoS)
attacks that rely on the exhaustion of the router’s state [219].

1.1.2 The Border Gateway Protocol (BGP)

BGP is the routing protocol that provides connectivity between independently
operated networks or autonomous systems (ASes)‹ such as Internet service
providers (ISPs).1 Each AS advertises its reachability information as a list of
IP prefixes‹ through a BGP update message. Such BGP updates accumulate
the sequence of ASes through which they have passed, and they contain a list
of attributes characterizing the advertised routes. There are two main types of
business relationships between ASes: a customer-provider relationship (one
AS pays another to forward traffic), and a peering relationship (two ASes agree
that directly connecting to each other without payment is mutually beneficial).
BGP lets ISPs perform traffic engineering and select routes based on policies
that reflect these business relationships through an intricate decision process
that is used to select the best route to a destination [45]. Unfortunately, BGP
comes with a number of shortcomings:

• Outages: Since the control plane‹ and the data plane‹ are not clearly
separated in today’s Internet, forwarding may suddenly stop during route
changes. By attacking routing, an adversary can thus prevent forwarding
from functioning correctly. Furthermore, when BGP update messages
are sent, the network may require up to tens of minutes to converge to a
stable state [145], which can lead to outages. Studies have shown that
a sudden degradation in user-perceived quality of VoIP calls is highly
correlated with BGP updates [144].

• Lack of fault isolation: BGP is a globally distributed protocol, running
amongst all BGP speakers in the entire Internet. BGP update messages
are thus disseminated globally. Due to the lack of any routing hierarchy
or isolation between different areas, a single faulty BGP speaker can
affect routing in the entire world, as occurred in the AS 7007 incident,
which disrupted global connectivity due to a single faulty router [176].

• Lack of scalability: The amount of work required to be performed
by BGP is proportional to the number of destinations. Moreover, path
changes are disseminated profusely and sometimes throughout the entire
Internet. This reduces scalability and prevents BGPsec (a proposal for a

1The definition of words marked with a star can be found in the glossary starting on Page 417.

5

1 Introduction

secured version of BGP) from frequently disseminating freshly signed
routing updates.

• Single path: At the end of the BGP decision process used to determine
how to reach a given destination, a single path is selected. Although
some multipath protocols allow simultaneous use of multiple network
interfaces, BGP does not provide path control to end hosts and does not
allow use of multiple AS-level paths.

1.1.3 Lack of Authentication and Trust

Authentication is another important feature that the original Internet protocols
lacked. The necessity of authenticating digital data is becoming increasingly
prevalent, as adversaries exploit the absence of authentication to inject malicious
information to attack the network.

Infrastructures to provide authentication have been added in an ad hoc man-
ner: RPKI provides the roots of trust for the authentication of BGPsec messages;
TLS allows browsers to authenticate web servers; and DNSSEC provides au-
thentication for DNS. Nevertheless, the current situation is still unsatisfactory in
many regards. For example, all these protocols are sensitive to the compromise
of a single entity. BGPsec and DNSSEC both rely on a single or very small
number of roots of trust, while TLS is based on an oligopolistic trust model in
which any one of hundreds of authorities can issue a certificate for any domain
name. The Internet Control Message Protocol (ICMP) does not even have an au-
thenticated counterpart, thus allowing the injection of fake ICMP packets. The
Internet also lacks a general infrastructure to enable two end hosts to establish
a shared secret key for end-to-end encrypted and authenticated communica-
tion; the simplest mechanism today is to rely on trust-on-first-use (TOFU)
approaches [250], which opportunistically send the public key unprotected to
the other communicating party.

1.1.4 Attacks

In this section, we present a series of attacks against which the current Internet
architecture offers little to no protection.

Prefix Hijacking

Due to a lack of fault isolation in BGP, numerous Internet outages are caused by
a malicious or erroneous announcement of IP address space, a problem called
prefix hijacking. Perhaps the most famous case of prefix hijacking happened in
February 2008 when Pakistan’s internal censorship attempt resulted in a global
outage of YouTube that took close to two hours to resolve [211]. This was not
the first nor the last such event.

6

1.1 Today’s Internet

A related attack is prefix redirection, where an adversary wants to eavesdrop
on traffic towards a destination and hijacks its prefix to receive its packets, but
also engineers BGP updates such that the packets finally do reach the intended
destination. Renesys (now Dyn) documented such cases of prefix redirection,
where the adversary managed to re-direct traffic to take a detour across another
continent [63].

This problem is exacerbated by the fact that defining BGP routing policies is
often a complicated, manual, and thus error-prone process. It can occur that a
backup path is rejected by a routing policy, hence limiting possible recovery
paths.

Spoofing and DDoS Attacks

ICMP can be employed to send error or diagnostic messages (used by tools such
as ping or traceroute). Because ICMP packets are not authenticated, the source
address can easily be spoofed, which can lead to distributed denial-of-service
(DDoS) attacks [142], or be used to disconnect two BGP routers from each
other [99]. Since regular IP packets are not authenticated either, they suffer
from the same problem, i.e., the source IP address can be spoofed.

Distributed denial-of-service (DDoS) attacks have been widely used to pre-
vent access to servers or network resources. For example, a large-scale attack
against Estonia made much of the country’s critical infrastructure inaccessible
during one week in April 2007 [109], and recently a very large attack with an
unprecedented amount of attack traffic — exceeding 1 Tbps — on Dyn’s DNS
infrastructure rendered numerous web sites unavailable [137, 198].

Forged TLS Certificates

Compromised trust roots have been used to create rogue TLS certificates [166,
167]. In a famous case, the government of Iran used forged certificates for
Google and Yahoo services to perform man-in-the-middle attacks on its citizens;
Iran is suspected to have mounted the attack on the DigiNotar certification
authority (CA)‹, which signed these certificates [90,228]. CAs hold significant
power in the TLS public-key infrastructure, as any trusted CA can produce a
valid certificate for any domain name. However, browser and OS vendors hold
even more power, as they control which CAs are trusted by default.

1.1.5 Transition to a New Architecture

Changing network protocols as fundamental as IP and BGP is not an easy
task. But in the long run, as for any technology, evolution is inevitable. It
is clear, however, that the current architecture cannot be replaced overnight.
Consequently, we need to propose a set of models and tools to achieve a

7

1 Introduction

progressive transition towards the desired properties. By redesigning the entire
architecture from a clean-slate perspective, we follow a holistic approach and
aim at fixing a broad range of problems, exploiting the benefit of hindsight and
leveraging the inventions made over the past decades.

1.2 Goals of a Secure Internet Architecture

In this section, we present high-level goals that an inter-domain point-to-point
communication architecture should accomplish; we illustrate why these goals
are important and how they can be achieved. We also briefly discuss non-goals,
i.e., specific properties that we intentionally exclude from the design of our
secure Internet architecture.

1.2.1 Availability in the Presence of Adversaries

Our overarching goal is the design of a point-to-point communication infrastruc-
ture that remains highly available even in the presence of distributed adversaries:
as long as an attacker-free path between endpoints exists, that path should be
discovered and used with guaranteed bandwidth between these endpoints.

Availability in the presence of adversaries is an exceedingly challenging
property to achieve. An on-path adversary may drop, delay, or alter packets that
it should forward, or inject additional packets into the network. The architecture
hence needs to provide mechanisms to circumvent such malicious elements.
An off-path adversary could launch hijack attacks to attract traffic to flow
through network elements under its control, and then perform on-path attacks.
Such traffic attraction can take various forms; for instance, an adversary could
announce a desirable path to a destination by using forged paths or attractive
network metrics. Conversely, an adversary could render paths not traversing its
network less desirable (e.g., by inducing congestion). An adversary controlling
a large botnet could also perform distributed denial-of-service (DDoS) attacks,
congesting selected network links. Finally, an adversary could interfere with
the discovery of legitimate paths (e.g., by flooding the control plane with bogus
paths).

1.2.2 Transparency and Control

We aim to provide greater transparency and control for the forwarding paths of
network packets, and the trust roots used for authentication.

8

1.2 Goals of a Secure Internet Architecture

Transparency and Control over Forwarding Paths

When the network offers path transparency, endpoints know (and can verify) the
forwarding path taken by network packets. Applications that transmit sensitive
data can benefit from this property, as it can be ensured that packets traverse
certain Internet service providers (ISPs) and avoid others.

Taking transparency of network paths as a first property, we aim to addi-
tionally achieve path control, a stronger property that enables ASes to control
the incoming path segments‹ through which they are reachable. Given path
segments, senders can then create end-to-end paths. This seemingly benign
requirement has several repercussions — beneficial but also fragile if imple-
mented incorrectly. The beneficial aspects of path control for senders and
receivers include the following:

• Separation of control plane and data plane: To enable path control,
the control plane (which determines networking paths) needs to be sepa-
rated from the data plane (which forwards packets according to the deter-
mined paths). The separation ensures that forwarding cannot retroactively
be influenced by control-plane operations, e.g., routing changes. The
separation contributes to enhanced availability.

• Enabling of multipath communication: Path control lets any sender
select multiple paths to carry packets towards the destination. Multipath
communication is a powerful mechanism to enhance availability [8].

• Defending against network attacks: If the packet’s path is carried in its
header (which is one way to achieve path control), then the destination can
reverse the path to return its response to the sender, mitigating reflection
attacks. Path control also enables circumvention of malicious network
entities or congested network areas, providing a powerful mechanism
against DoS and DDoS attacks.

The fragile aspects that need to be handled with care are the following:
• Respecting ISPs’ forwarding policies: If senders have complete path

control, they may violate ISPs’ forwarding policies. We thus need to
ensure that ISPs offer a set of policy-compliant paths which senders can
choose from.

• Preventing malicious path creation: A malicious sender could exploit
path control for attacks, for example by forming malicious forwarding
paths such as loops that consume increased network resources.

• Scalability of path control: Source routing does not scale to inter-
domain networks, as a source would need to know the network topology
to determine paths. To make path control scale, we ensure that sources
select amongst a relatively small set of paths. We thus rely on source-
selected paths and packet-carried forwarding state instead of full-fledged
source routing.

9

1 Introduction

• Permitting traffic engineering: Fine-grained path control would inhibit
ISPs from operating and performing traffic engineering. We thus seek to
provide end-host path control at the granularity of autonomous systems
on the level of ingress/egress interfaces, allowing ISPs to fully control
internal paths. ISPs can further perform traffic engineering based on
per-path bandwidth allocations, which can be encoded in the forwarding
information.

Transparency and Control over Trust Roots

Roots of trust are used for the verification of entities in today’s Internet; for
example, verification of a web server’s public key in a TLS certificate, or
verification of a Domain Name System (DNS) response in DNSSEC [13].
Transparency of trust roots provides the property that an end host or user can
know the complete set of trust roots that it needs to rely upon for the validation
of a certificate. Such enumeration of trust roots is complicated today because
of intermediate certification authority (CA) certificates that are not explicitly
listed but implicitly trusted, e.g., in the TLS public-key infrastructure (PKI).
In fact, independent studies have counted over 300 roots of trust in the TLS
PKI [1, 78], but because of the lack of transparency there may be additional
ones these studies have missed. Providing control over trust roots enables trust
agility [165], allowing users to select or exclude the roots of trust they want to
rely upon.

1.2.3 Efficiency, Scalability, and Extensibility

Aside from the lack of availability and transparency, today’s Internet also suffers
from a number of stability deficiencies. For instance, the Border Gateway Pro-
tocol (BGP) encounters stability issues in cases of network fluctuations, where
routing protocol convergence can require minutes [216]. A 2006 earthquake in
Taiwan that severed several undersea communication cables caused Internet out-
ages throughout Asia for several days [25]. Moreover, forwarding tables have
reached the limits of their scalability due to IP prefix de-aggregation (i.e., an-
nouncement of more specific prefixes) and multihoming‹ [117]. Unfortunately,
extending the memory size of routing tables is challenging as the underlying
ternary content-addressable memory (TCAM)‹ hardware is expensive and
power-hungry, consuming on the order of a third of the total power consumption
of a router. Extending the routing-table memory would thus drastically increase
the cost and power consumption of routers.

Security and high availability come at a cost, usually resulting in lower effi-
ciency and potentially diminished scalability. High performance and scalability,
however, are required for viability in the current economic environment. We
therefore explicitly seek high efficiency as a goal, so that packet forwarding is at

10

1.2 Goals of a Secure Internet Architecture

least as efficient (in terms of latency and throughput) as current IP forwarding,
in the common cases. Moreover, we seek improved scalability compared to the
current Internet, in particular with respect to BGP and the size of routing tables.

An approach to achieving efficiency and scalability is to avoid storing for-
warding state on routers wherever possible. We thus aim to encode state into
packet headers and to protect that state cryptographically, enabling simpler
router architectures compared to today’s IP routers. We observe that modern
block ciphers such as AES can be computed faster than performing memory
lookups. For example, on current PC platforms, computing AES requires on the
order of 50 cycles while fetching a byte from main memory requires around 200
cycles [4]. Moreover, a modern block cipher can be implemented in hardware
with a few tens of thousands of gates, which is sufficiently small to replicate
it profusely, which in turn enables high parallelism — the high complexity of
a high-speed memory system prevents such replication at the same scale. Be-
sides higher efficiency, avoiding state on routers also prevents state-exhaustion
attacks [219] and state inconsistencies across routers.

Our goal of efficiency and scalability is in line with the design rationale of
end hosts assisting with network-layer functionality such as path selection. A
selected path is communicated to the network by packet-carried forwarding
information, which in turn removes the need for inter-domain routing tables
at border routers. Consequently, end-host path selection results in a simpler
forwarding plane and thus more efficient routers. Furthermore, end-host path se-
lection is in line with the end-to-end principle, which states that a network func-
tionality should be implemented by the entity that has the required information,
and is thus in the best position to correctly implement the functionality [217].
Since the end host has the most information about its internal state, functions
such as bit-error recovery, duplicate suppression, or delivery acknowledgments
are most efficiently handled by the end host itself. Similarly, the end host has
the knowledge of preferred or undesirable network paths and thus should be
involved in path selection.

To future-proof SCION, we design the core architecture and codebase to
be extensible, such that additional functionality can be easily built and de-
ployed. SCION clients and routers should (without overhead or expensive
protocol negotiations) discover the minimum common feature set supported by
all intermediate nodes.

1.2.4 Support for Global but Heterogeneous Trust

Given the diverse nature of constituents in today’s Internet with diverse legal
jurisdictions and interests, an important challenge is how to scale the authenti-
cation of entities (e.g., autonomous systems for routing, name servers for DNS,
or domains for TLS) to a global environment.

11

1 Introduction

The trust roots of currently prevalent PKI models (monopoly and oligopoly)
do not scale to a global environment because mutually distrusting entities cannot
agree on a single trust root (monopoly model), and because the security of a
plethora of trust roots is only as strong as its weakest link (oligopoly model).

We thus seek an architecture that supports a global environment with hetero-
geneous trust.

1.2.5 Deployability

Incentives for deployment are important to overcome the resistance to upgrading
today’s Internet. A multitude of features is necessary to offer the initial impulse:
high availability even under control-plane and data-plane attacks (e.g., built-in
DDoS defenses), path transparency and control, trust-root transparency and
control, high efficiency, robustness to configuration errors, fast recovery from
failures, high forwarding efficiency, multipath forwarding, and so on.

If early adopters cannot obtain sufficient benefits from migrating to a new
network architecture, even initial deployment is unlikely to be successful. So
ideally, already the first deploying ISP should gain a competitive advantage
through the ability to sell a service that is desirable even for the initial customers.

Migration to the new architecture should require minimal added complexity
to the existing infrastructure. Deployment should be possible by re-utilizing the
internal infrastructure of an ISP, and only require installation or upgrade of a
few border routers. Moreover, configuration of the new architecture should be
similar to that of the existing architecture, such as in the configuration of BGP
policies, minimizing the amount of additional personnel training.

Economic and business incentives are also of critical importance. ISPs should
be able to define new business models and sell new services. Users should
derive a business advantage from the new architecture, for example by obtaining
properties similar to a leased line at a smaller cost. Migration cost should be
minimal, requiring only the deployment of low-cost routers. Finally, a new
architecture should not disrupt current Internet business models, but maintain
the current Internet topology and business relationships (e.g., support peering).

1.2.6 Non-goals

We deliberately exclude certain properties and goals that could be added as
additional functionality later on. For example, we do not consider multicast or
efficient content dissemination as part of the basic communication infrastructure,
as we recognize the significant complexity these features would add. Also,
these features can be effectively added through an overlay leveraging a next-
generation Internet architecture’s basic communication infrastructure [86].

We additionally consider several other problems to be out of scope for a
network architecture. A major category of current security problems is soft-

12

1.3 Future Internet Architectures

ware vulnerabilities. While software vulnerabilities of end hosts are clearly out
of scope, software vulnerabilities of network components can affect network
operation. It is thus important to address these network vulnerabilities through
a robust network architecture that can restrain malicious components. Mali-
cious Internet content (e.g., spam or phishing emails, malicious web pages) is
preferably addressed by a layer above the communication infrastructure. The
architecture, however, should offer mechanisms that assist in defending against
these threats.

1.3 Future Internet Architectures

Several efforts at redesigning the Internet have been made over the past two
decades to satisfy the new requirements of emerging Internet-based applica-
tions. Such requirements include naming, routing, mobility, network efficiency,
availability, manageability, and evolvability of the Internet. We discuss several
projects in this space based on a loosely temporal order clustered by topics.

The idea of partitioning the network into smaller parts has previously been
considered for making network routing more scalable, for instance in hierarchi-
cal routing [127, 134], the Landmark hierarchy [242], hierarchies of nodes in
Nimrod [47,223], regions in NewArch [57], clusters of computers in FARA [56],
isolated regions with independent routing protocols in HLP [232], realms and
trust boundaries in the Postmodern Internet Architecture (POMO) [34, 46], and
regions in NIRA [259].

The NewArch project [57] describes comprehensive requirements for a new
Internet, such as separation of identity from location, late binding using asso-
ciation, identity authenticity, and evolvability. However, it mostly emphasizes
a new direction for end-point entities while the packet delivery in the current
IP network is left intact. NewArch uses the New Internet Routing Architec-
ture (NIRA) [259] for inter-domain routing, which aims to introduce competi-
tion among ISPs in the core by providing route control to the end users, who
can choose domain-level paths.

Information-centric networking (ICN) or content-centric networking (CCN)
architectures optimize content access through in-network content caches. Since
content access across a user population frequently exhibits strong temporal and
spatial locality, in-network content caches can serve the same requests made
by nearby users. For instance, the Named Data Networking (NDN) [123, 184]
architecture decouples location from identity and uses identity for locating
the corresponding content. NDN relies on in-network caching of data and
is useful for accessing popular static content. The CCNx project proposes
a related implementation of content-centric networking, developing detailed
specifications and prototype systems [192]. The Publish-Subscribe Internet
Routing Paradigm (PSIRP) supports information-centric networking based on a
publish-subscribe pattern [237]. It proposes an elegant approach to reduce the

13

1 Introduction

state on routers by having packets carry Bloom filters to encode the next hops of
a multicast packet [125]. These architectures, however, have a high overhead for
point-to-point communication, for ephemeral content (e.g., voice or video calls),
or for per-user customized content. Our energy analysis presented in Chapter 14
suggests that content-centric approaches have higher energy utilization than
fetching content directly from the origin server, due to the increased power
consumption of routers with this architecture.

MobilityFirst [208] is an architecture with the main goal of providing con-
nectivity to billions of mobile devices. At its core is the Auspice system, which
provides a highly efficient global name resolution service that can quickly map
billions of identities to their locations [220]. NEBULA [9] addresses secu-
rity problems in the current Internet. NEBULA takes a so-called default-off
approach to reach a specific service, where a sender can send packets only if
an approved path to a service is available. The network architecture helps the
service to verify whether the packet followed the approved path (i.e., supporting
path verification). However, NEBULA achieves this property at a high cost. All
routers on the path need to perform computationally expensive path verifica-
tion for each packet and need to keep per-flow state. Serval [186] provides a
service abstraction layer for service-ID-based resolution in NEBULA. Serval
introduces a service-access layer that enables late binding of a service to its
location, which provides flexibility in migrating and distributing services.

XIA [106] proposes an evolvable network architecture that can easily adapt
to the evolution of networks by supporting various principal types (where the
principal includes but is not limited to service, content, host, domain, and path).
Thanks to its flexibility, XIA can use SCION for secure and highly available
data forwarding.

The Framework for Internet Innovation (FII) [135] also proposes a new
architecture to enable evolution, diversity, and continuous innovation, such that
the Internet can be composed of a heterogeneous conglomerate of architectures.
The ChoiceNet [253] architecture proposes an “economy plane” to enable
network providers to offer new network-based services to customers, providing
a network environment for improving innovation and competition.

Several architecture proposals suggest the approach of better path control for
senders and receivers, for example i3 [229], Platypus [204, 205], NIRA [259],
SNAPP [195], Pathlets [98], and Segment Routing [88]. These proposals enable
the source to embed a forwarding path into the packet header, a concept that
we refer to as packet-carried forwarding state (PCFS). PCFS provides many
beneficial properties, such as enabling multipath communication and protecting
packets from unanticipated re-routing.

Forward [81] and SysSec [82] are proposing to build secure and trusted Infor-
mation and Communication Technology (ICT) systems by engaging academia
and industry. Forward is an initiative by the European Commission to promote
the collaboration and partnership between industry and academia in their com-

14

1.3 Future Internet Architectures

mon goal of protecting ICT infrastructures. The Forward project categorizes
security threats to various ICT systems including individual devices, social
networks, critical infrastructures (such as smart electric grids), and the Internet
infrastructure, and it aims at coordinating multiple research efforts to build se-
cure and trusted ICT systems and infrastructures. SysSec aims to bring together
the systems security research community in Europe, promoting cybersecurity
education, engaging a think tank in discovering the threats and vulnerabilities of
the current and future Internet, creating an active research road map in the area,
and developing a joint working plan to conduct state-of-the-art collaborative
research. Since Forward and SysSec currently focus on identifying and handling
threats, we believe our proposed tasks to be a good addition to the projects
in that they provide an architecture that would significantly reduce the attack
surface. RINA [249] is a recursive inter-network architecture that provides
unified APIs across all protocol layers. In RINA, all layers have the same func-
tions with different scope and range, where a layer is a distributed application
that performs and manages inter-process communication. We endeavored to
design our prototype to fit into this paradigm so that our architecture can support
seamless integration with other higher-layer security protocols/mechanisms.

Many researchers are currently studying software-defined networking (SDN),
for example in the OpenFlow [171, 189] project. These efforts mainly consider
intra-domain communication, which SCION can leverage to communicate
within a domain.

Several future Internet efforts provide testbeds for running and testing a new
architecture, such as GENI [28], FIWARE [80], and FIRE [79].

We have developed SCION with a focus on security and high availability for
point-to-point communication, which is a unique perspective and can contribute
to other future Internet efforts. For instance, content-centric networking also
needs a routing mechanism to reach the data source. SCION can offer the
routing protocol to support that functionality. Once a server is found in a
service-based infrastructure or a nearby content cache is found in a content-
centric architecture, point-to-point communication between the end host and the
server will offer high communication efficiency, as pure forwarding is faster than
server-based or content-based lookups. Similarly, SCION can provide the point-
to-point communication fabric in a mobility-centric architecture. Consequently,
SCION offers mechanisms that complement many previously proposed future
Internet architectures.

15

2 The SCION Architecture

DAVID BARRERA, LAURENT CHUAT, ADRIAN PERRIG,
RAPHAEL M. REISCHUK, PAWEL SZALACHOWSKI

This chapter provides an overview of SCION. The goals to be met by a secure
Internet architecture were described in the previous chapter, but to recapitulate
briefly, our main aim is to design a network architecture that offers highly avail-
able and efficient point-to-point packet delivery, even if some of the network
operators and devices are actively malicious. The following chapters describe
the SCION architecture in increasing detail.

SCION introduces the concept of an isolation domain (ISD)‹, which is a
fundamental building block for achieving the properties of high availability,
transparency, scalability, and support for heterogeneous trust. An ISD consti-
tutes a logical grouping of autonomous systems (ASes), as depicted in Figure 2.1.
An ISD is administered by multiple ASes, which form the ISD core‹. We refer
to these as core ASes‹. An ISD usually also contains multiple regular ASes.
The ISD is governed by a policy, called the trust root configuration (TRC)‹,
which is negotiated by the ISD core. The TRC defines the roots of trust that are
used to validate bindings between names and public keys or addresses.

An AS joins an ISD by purchasing connectivity from another AS in the ISD.
Joining an ISD indicates an acceptance of the ISD’s TRC. Typically, 3–10 ISPs
constitute an ISD core, and their associated customers participate in the ISD. We
envision that ISDs will span areas with uniform legal environments that provide
enforceable contracts. If two ISPs have a contract dispute they cannot resolve
by themselves, such a legal environment can provide an external authority to
resolve the dispute. All ASes within an ISD also agree on the TRC, i.e., the
entities that operate the trust roots and set the ISD policies. One possible model
is thus for ISDs to be formed along national boundaries or federations of nations,
as entities within a legal jurisdiction can enforce contracts and agree on a TRC.
ISDs can also overlap, so an AS may be part of several ISDs. Although an
ISD ensures isolation from other networks, the central purpose of an ISD is to
provide transparency and to support heterogeneous trust environments. While
ISDs may seem to lead to “Balkanization” and prevent an open Internet, they
counter-intuitively provide openness and transparency, as we hope to elucidate

17

2 The SCION Architecture

ISD
core

TRC

ISD
core

ISD

AS
Prov.-Cust. link
Peering link

ISD
core

K

A

B

E

Z1

ISD

TRC

D

Z3

J

C

ISD

ISD
core

TRC

H

I

ISD

TRC

Core link

Z2

G

F

Figure 2.1: Autonomous systems (ASes) grouped into four ISDs. The core
ASes are connected via core links. Non-core ASes are connected
via customer-to-provider or peering links. AS H participates in two
ISDs.

in this book (for more information on this point, please refer to the FAQ on
Page 409).

SCION uses two levels of routing, intra-ISD and inter-ISD. Both levels
utilize path-segment construction beacons (PCBs)‹ to explore routing paths
(see Figure 2.2a). An ISD core AS announces a PCB and disseminates it as a
policy-constrained multipath flood either within an ISD (to explore intra-ISD
paths) or amongst core ASes (to explore inter-ISD paths). We refer to this
process as beaconing. PCBs accumulate cryptographically protected AS-level
path information as they traverse the network. This information (which we
call hop fields (HF)) within received PCBs is chained together by sources
to create a data transmission path segment that traverses a sequence of ASes.
Packets thus contain AS-level path information, which avoid the need for border
routers to maintain inter-domain forwarding tables. We refer to this concept as
packet-carried forwarding state (PCFS)‹.

Figure 2.3 illustrates the chronological sequence of operations required to
obtain a forwarding (i.e., end-to-end) path. During the path exploration or
beaconing phase, ASes discover paths to core ASes. Path registration allows
ASes to transform a few selected PCBs into path segments, and register these
path segments with a path infrastructure (making them available for other
ASes). The name resolution process translates a domain name into its associated
SCION address(es)‹. The path resolution process allows end hosts to create
an end-to-end forwarding path to a destination; it consists of (a) path lookup,

18

PCB
PCB

PCB
PCB

core

K

A

B

E

Z1

ISD

TRC

Non-Core PCB

C

D

Z3

Z2

AS

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

PCB

AS

Prov.-Cust. link
Core PCBPeering link

PCB

PCBPCB

PCBPCB PCB

PCB

P
B
C

ISD

(a) (b)

Path server
Beacon server
Certificate server Internal router

Border router

N Name server

P
B

P

B

C
N

C

Figure 2.2: (a) ISD with path-segment construction beacons (PCBs) that are
propagated from the ISD core to customer ASes, and path segments
for ASes A, B, C, D, and E to the ISD core. (b) Magnified view of
a SCION AS with its routers and servers. The path from AS C to
the ISD core traverses two internal routers.

where the end host obtains path segments, and (b) path combination, where
an actual forwarding path is created from the path segments. We discuss these
phases in this chapter and describe them in more detail in the sections referred
to in Figure 2.3.

Path Exploration (Beaconing)
§7.1 on Page 119

Path Registration
§7.1 on Page 119

Name Resolution
§6 on Page 101

Path Lookup
§7.2 on Page 132

Path Combination
§8.2 on Page 164

Path Resolution

Figure 2.3: Process leading to the creation of a forwarding path.

Servers and Routers

Figure 2.2b shows the main AS components in SCION: beacon servers‹ dis-
cover path information, path servers‹ disseminate path information, certificate
servers‹ assist with validating path information, and name servers‹ provide

19

2 The SCION Architecture

name resolution from user-understandable names to SCION addresses. In ad-
dition, border routers provide the connectivity between ASes, while internal
routers forward packets inside the AS.

Beacon servers are responsible for generating, receiving, and propagating
PCBs (see Figure 2.2a) to construct path segments, a process we also refer to as
beaconing. SCION supports two types of beaconing: intra-ISD beaconing (to
construct path segments from a core AS to non-core ASes within an ISD) and
inter-ISD beaconing (to construct path segments amongst core ASes within an
ISD and across ISDs). Figure 2.4 shows how PCBs originate from a core AS
beacon server and are propagated to non-core customer ASes. Non-core AS
beacon servers receive these PCBs and re-send them to their customer ASes,
which results in AS-level path segments. At every AS, information about the
ingress and egress interfaces of the AS is added to the PCB. The ingress and
egress interfaces identify the link to a neighboring AS. Periodically, a beacon
server generates a set of PCBs, which it forwards to its customer ASes.

Inter-ISD beaconing in SCION is similar to BGP’s route-advertising process,
although in SCION the process is periodic and PCBs are flooded over policy-
compliant paths to discover multiple paths between any pair of core ASes.
SCION’s beacon servers can be configured to implement all BGP route selection
policies, as well as additional properties (e.g., control of upstream ASes) that
BGP cannot express (see Section 10.9).

Name servers in SCION perform a similar task to DNS servers in today’s
Internet: translate a human-understandable name into a SCION address. SCION
proposes the RAINS system for this purpose Chapter 6. Based on the (ISD,
AS) tuple, end-to-end paths can be looked up and constructed. The end-host
address and end-to-end path are then placed in the SCION packet header to
enable delivery to a given destination.

Path servers store mappings from AS identifiers to sets of announced path
segments, and are organized as a hierarchical caching system similar to today’s
DNS. Through beacon servers, ASes select the set of path segments through
which they want to be reached, and upload them to a path server in the ISD
core.

Certificate servers keep cached copies of TRCs retrieved from the ISD core,
keep cached copies of AS certificates, and manage keys and certificates for
securing inter-AS communication. Certificate servers are queried by beacon
servers when validating the authenticity of PCBs (i.e., when a beacon server
lacks a certificate).

Border routers connect different ASes supporting SCION. The main task
of border routers is to forward packets. In the case of a packet containing a
service address, the border router forwards it to the appropriate server, and in
the case of a data packet the border router forwards it either to a host inside
the AS or towards the next border router. Since SCION can operate using any

20

2.1 Control Plane

communication fabric inside an AS (e.g., OSPF, SDN, MPLS), the internal
routers do not need to be changed.

2.1 Control Plane

We will now discuss the control plane components and mechanisms in more
detail. The control plane is responsible for discovering paths and making those
paths available to end hosts.

2.1.1 Path Exploration and Registration

Inter-domain beaconing enables core ASes to learn paths to other core ASes.
Through intra-domain beaconing, non-core ASes learn path segments leading to
core ASes, which enable an AS to communicate with the ISD core. Figure 2.2a
shows path segments from ASes A, B, C, and D to the core. The beaconing
process is asynchronous, i.e., the PCB generation is local, based on a per-AS
timer, and PCBs are not propagated immediately upon arrival.

Paths are represented at AS-level granularity, which by itself is insufficient
for diversity; ASes often have several connection points, and thus a disjoint path
is possible despite the AS sequence being identical. For this reason, SCION
encodes AS ingress and egress interfaces as part of the path, exposing a finer
level of path diversity. Figure 2.4 demonstrates this feature: AS F receives two
different PCBs via two different links from a core AS. Moreover, AS F uses
two different links to send two different PCBs to AS G, each containing the
respective egress interfaces. AS G extends the two PCBs and forwards both of
them over a single link to its customer.

An AS typically receives several PCBs representing several path segments to
various core ASes. Figure 2.2a shows two path segments for AS D, for example.
There are three types of path segments:

• A path segment from a non-core AS to the core is an up-segment.
• A path segment from the core to a non-core AS is a down-segment.
• A path segment between core ASes is a core-segment.

However, path segments are typically bidirectional and thus support packet
forwarding in both directions. In other words, up-segments and down-segments
are invertible: by flipping the order, an up-segment is converted to a down-
segment and vice versa. Path servers learn up-segments by extracting them
from PCBs they obtain from the local beacon servers. Path servers in core ASes
also store core-segments to reach other core ASes.

The beacon servers in an AS select the down-segments through which the
AS desires to be reached, and register these path segments at the core path

21

2 The SCION Architecture

AS G

Core

AS F

B

3
4

5

7

1

2

34

1

12

2

6

5

PCB
Core
 · Out: 1

PCB
Core
 · Out: 2

HJ

PCB
Core
 · Out: 2

AS F
 · In: 2 Out: 5
 · Peer J: 1
 · Peer H: 4

PCB
Core
 · Out: 2

AS F
 · In: 2 Out: 6
 · Peer J: 1
 · Peer H: 4

PCB
Core
 · Out: 2

AS F
 · In: 2 Out: 6
 · Peer J: 1
 · Peer H: 4

AS G
 · In: 5 Out: 3

PCB
Core
 · Out: 2

AS F
 · In: 2 Out: 5
 · Peer J: 1
 · Peer H: 4

AS G
 · In: 1 Out: 3

PCB
PCB

PCB

PCB

PCB

PCB

PCB

PCB
Core
 · Out: 1

AS F
 · In: 3 Out: 5
 · Peer J: 1
 · Peer H: 4

PCBPCB

PCB
Core
 · Out: 1

AS F
 · In: 3 Out: 6
 · Peer J: 1
 · Peer H: 4

PCB
Core
 · Out: 1

AS F
 · In: 3 Out: 5
 · Peer J: 1
 · Peer H: 4

AS G
 · In: 1 Out: 3

PCB

PCB
Core
 · Out: 2

AS F
 · In: 2 Out: 7
 · Peer J: 1
 · Peer H: 4

PCB
Core
 · Out: 1

AS F
 · In: 3 Out: 6
 · Peer J: 1
 · Peer H: 4

AS G
 · In: 5 Out: 3

PCB

PCB

PCB
Core
 · Out: 1

AS F
 · In: 3 Out: 7
 · Peer J: 1
 · Peer H: 4

Figure 2.4: Intra-ISD PCB propagation from the ISD core down to customer
ASes. For the sake of illustration, the interfaces of each AS are
numbered with consecutive integer values. In practice, each AS can
choose any encoding for its interfaces. In fact, only the AS itself
needs to understand its encoding.

servers. When links fail, segments expire, or better segments become available,
the beacon servers keep updating the down-segments registered for their AS.

An important requirement is that SCION also supports peering links between
ASes. Consistent with AS policies in the current Internet, PCBs typically do
not traverse peering links. However, peering links are announced along with
a regular path in a PCB. Figure 2.4 shows how AS F includes its two peering
links in the PCB. If the same peering link is announced in the path segments
by both ASes adjacent to the peering link, then the peering link can be used
to shortcut the end-to-end path (i.e., without going through the core). SCION
also supports peering links that cross ISD boundaries, which highlights the

22

2.1 Control Plane

importance of SCION’s path transparency property; a source knows the exact
set of ASes and ISDs traversed during the delivery of a packet.

2.1.2 Path Lookup

To reach its ISD core, a host performs a path lookup at its local path server,
fetching up-segments. To reach a remote destination, a host first queries a
name server to obtain the ISD-AS-address triplet of the destination. The host
then queries its path server for the down-segment of the destination AS. If the
local path server has no cached entry for the down-segment, it will query the
destination AS’s core path server.

Example. Consider a source host in ISD 1 sending a path lookup request to
its local path server, which forwards the request to a core path server. If the
requested path’s destination AS is within ISD 1, the core path server responds
by immediately sending up to k down-segments to the local path server. If
the requested path’s destination AS is in ISD 2, then the core path server
first requests the corresponding down-segments from the core path server in
destination ISD 2 before responding to the local path server. In both cases, the
local path server returns up to k up- and down-segments to the requesting source
(where k is a small integer set to 5 in the current implementation). If the up-
and down-segments end at different core ASes, then core segments connecting
the core ASes are returned as well.

2.1.3 PCB and Path-Segment Selection

Among the received PCBs, ASes must choose a set of PCBs to propagate fur-
ther, and a set of path segments to register. These PCBs and path segments are
selected based on a path quality metric with the goal of identifying consistent,
diverse, efficient, and policy-compliant paths. Consistency refers to the require-
ment that there exists at least one property along which the path is uniform,
such as an AS capability (e.g., anonymous forwarding) or link property (e.g.,
low latency). Diversity refers to the set of paths that are announced over time
being as path-disjoint as possible to provide high-quality multipath options.
Efficiency refers to the length, bandwidth, latency, utilization, and availability
of a path, where more efficient paths are naturally preferred. Policy compli-
ance refers to the requirement that the path adheres to the AS’s routing policy.
Based on past PCBs that were sent, a beacon server scores the current set of
candidate path segments and sends the k best segments as the next PCB. To
provide some concreteness to this description, we currently use k “ 5, and send
PCBs every 5 seconds to each neighbor over each provider-to-customer link.
SCION intra-ISD beaconing can scale to networks of arbitrary size, because

23

2 The SCION Architecture

each inter-AS link carries the same number of PCBs regardless of the number
of PCBs received by the AS.

Inter-ISD beaconing operates similarly to intra-ISD beaconing, except that
inter-ISD PCBs only traverse core ASes. The same path selection metrics apply,
where an AS attempts to forward the set of most desirable paths to its neighbors.
A difference, however, is that an AS forwards k PCBs per source AS, with
k “ 3. The periodicity is also reduced; we forward PCBs once a minute or
upon path changes. Similarly to BGP, this process is inherently not scalable
(as the overhead grows linearly with the number of core ASes); however, as
the number of ISDs and the corresponding number of core ASes is small, this
approach is viable.

2.1.4 Link Failures

Unlike in the current Internet, link failures are not automatically resolved by
the network, but require active handling by end hosts. Since SCION forwarding
paths are static, they break when one of the links fails. Link failures are handled
by a three-pronged approach that typically masks link failures without any
outage to the application and rapidly re-establishes fresh working paths:

• Beaconing occurs every few seconds, constantly establishing new work-
ing paths.

• The SCION control message protocol (SCMP) (SCION-equivalent of
ICMP) is used for path-segment revocation. As described in detail in
Section 7.3, failed links result in rapid erasure of affected path segments
from path servers.

• SCION end hosts use multipath communication by default, thus masking
link failures to an application with another working path. As multipath
communication can increase availability (even in environments with
very limited path choice [8]), SCION beacon servers actively attempt to
create disjoint paths, SCION path servers make an effort to select and
announce disjoint paths, and end hosts compose path segments to achieve
maximum resilience to path failure. Consequently, we expect that most
link failures in SCION will be unnoticed by the application, unlike the
frequent (although mostly brief) outages in the current Internet [131,144].

2.1.5 Intra-AS Communication

Communication within an AS is handled by existing intra-domain communica-
tion technologies and protocols such as IP with Software-Defined Networking
(SDN), or Multi-Protocol Label Switching (MPLS). Figure 2.2b on Page 19
shows one possible intra-domain path through the magnified AS.

24

2.2 Data Plane

2.2 Data Plane

While the control plane is responsible for providing end-to-end paths, the data
plane ensures packet forwarding using the provided paths. A SCION packet
minimally contains a path; source and destination addresses are optional in
case the packet’s context is unambiguous without addresses. Consequently,
SCION border routers forward packets to the next AS based on the AS-level
path in the packet header (which is augmented with ingress and egress interface
identifiers for each AS), without inspecting the destination address and also
without consulting an inter-domain routing table. Only the border router at the
destination AS needs to inspect the destination address or packet purpose to
forward it to the appropriate local host.

An interesting aspect of this forwarding is enabled by the split of locator (the
path towards the destination AS) and identifier (the destination address) [83]:
the identifier can have any format that the destination AS can interpret, since
only the destination needs to consider that local identifier. In other words, an
AS can select an arbitrary addressing format for its hosts, e.g., a 4-byte IPv4, 6-
byte medium access control, 16-byte IPv6, or 20-byte accountable IP (AIP [7])
address. A nice consequence is that an IPv4 host can directly communicate
with an IPv6 host over SCION.

In the next two sections, we describe how an end host combines path segments
into an end-to-end forwarding path, and how border routers forward packets
efficiently.

2.2.1 Path Combination

After name resolution and path lookup, the end host obtains path segments
that need to be combined into an end-to-end path. A valid SCION forwarding
path‹ can be created by combining up to three path segments, in the following
ways (all combinations are illustrated with sample paths depicted in Figure 2.5):

• Immediate combination of path segments (e.g., BÑD): the last AS on
the up-segment (core AS Z3) is also the first AS on the down-segment. In
this case, the simple combination of an up-segment and a down-segment
creates a valid forwarding path.

• AS shortcut (e.g., BÑC): the up-segment and down-segment intersect
at a non-core AS (e.g., K). In this case, a shorter forwarding path can be
created by removing the extraneous part of the path.

• Peering shortcut (e.g., A Ñ B): a peering link (e.g., L Ñ K) exists
between the two segments, so a shortcut via the peering link is possible.
As in the AS shortcut case, the extraneous path segment is cut off. The
peering link could be traversing to a different ISD.

25

2 The SCION Architecture

PCB
PCB

PCB
PCB

core

K

A

B

E

L

Z1

ISD

C

D

Z3

Z2

AS

Prov.-Cust. link
Peering link

ISD

Figure 2.5: ISD with path segments for ASes A, B, C, D, and E.

• Combination with a core-segment (e.g., AÑ D): the last AS on the
up-segment is different from the first AS on the down-segment. This case
requires an additional core-segment (e.g., Z1 Ñ Z2) to connect the up-
and down-segment. If the communication remains within the same ISD
(AÑ D), a local ISD core-segment is needed; otherwise (e.g., AÑ I in
Figure 2.1), an inter-ISD core-segment is required.

• On-path (e.g., AÑ E): the destination AS is directly on the path to the
ISD core, so a single up-segment is sufficient to create a forwarding path.

Once a forwarding path is chosen, it is encoded in the SCION packet header,
which makes inter-domain routing tables unnecessary for border routers: both
the egress and the ingress interface of each AS on the path are encoded as
packet-carried forwarding state (PCFS) in the packet header. The destination
can respond to the source by inverting the end-to-end path from the packet
header, or it can perform its own path lookup and combination.

2.2.2 Forwarding

Routers can efficiently forward packets in the SCION architecture. In particular,
the absence of inter-domain routing tables and the absence of complex longest IP
prefix matching performed by current routers enables construction of faster and
more energy-efficient routers, which we discuss in more detail in Chapter 14.

26

2.3 Security Aspects

The SCION packet header contains a sequence of hop fields (HF), one for
each AS that is traversed on the end-to-end path. During forwarding, each
AS inspects its respective HF in the packet header. The HF contains interface
numbers of the ingress and egress links, which are essentially descriptors of
the links across which the packet is entering and exiting the AS. Figure 2.4 on
Page 22 depicts how the HF information is assembled in the PCB as part of the
beaconing process.

During packet forwarding, a SCION border router at the ingress point of the
AS first verifies that the packet entered through the correct ingress interface
corresponding to the information in the HF. If the packet has not yet reached
the destination AS, the egress interface defines the egress SCION border router
— in which case native intra-domain routing (e.g., OSPF, MPLS) is used to send
the packet from the ingress SCION border router to the egress SCION border
router.

2.3 Security Aspects

For protection against malicious entities and to provide secure control and data
planes, SCION is equipped with an arsenal of security mechanisms.

Similarly to BGPsec [158], each AS signs the PCBs it forwards. This
signature enables PCB validation by all entities. To ensure path correctness,
the forwarding information within each packet-carried forwarding state (PCFS)
also needs to be cryptographically protected, but signature verification would
hamper efficient forwarding. Thus, each AS uses a secret symmetric key that
is shared among beacon servers and border routers and is used to efficiently
compute a message authentication code (MAC) over the forwarding information.
The per-AS information includes the ingress and egress interfaces, an expiration
time, and the MAC computed over these fields, which is (by default) all encoded
within an 8-byte field that we refer to as the hop field (HF). Excluding a few
flag bits, the structure of the HF is at the discretion of each AS and requires no
coordination with any other AS — as long as the AS itself can extract how to
forward the packet on to the next AS.

The specified ingress and egress interfaces uniquely identify the links to the
previous and following ASes. If a router is connected via the same outgoing
interface to three different neighboring ASes, three different egress interface
identifiers would be assigned. The HF’s expiration time can be set on the
granularity of seconds or hours, depending on the path type.

2.3.1 Algorithm Agility

In terms of cryptographic mechanisms, SCION provides algorithm agility,
so that cryptographic methods can be easily updated and exchanged. The

27

2 The SCION Architecture

MAC validation of hop fields is per-AS, so an AS can independently (without
interaction with any other entity) update its keys or cryptographic mechanisms.
We support multiple signatures by an AS, thus, an AS can readily deploy a new
signature algorithm and start adding those signatures as well. A component
of the path-segment and PCB selection metric will favor creating paths where
each AS on the path supports the new algorithm.

2.3.2 Authentication

Authentication in SCION is based on certificates, which bind identifiers to
public keys and carry digital signatures that are verified by roots of trust, i.e.,
public keys that are axiomatically trusted.1 One challenge is how to achieve
trust agility to enable flexible selection of trust roots, resilience to private key
compromise, and efficient key revocation.

SCION allows each ISD to define its own set of trust roots, along with the
policy governing their use. Such scoping of trust roots within an ISD greatly
improves security, as compromise of a private key associated with a trust root
cannot be used to forge a certificate outside the ISD. An ISD’s trust roots and
policy are encoded in the trust root configuration (TRC). The TRC has a version
number, a list of public keys that serve as roots of trust for various purposes, and
policies governing how many signatures are required for performing different
types of actions. The TRC serves as a way to bootstrap all authentications.

We now briefly discuss two properties offered by the TRC. Trust agility
enables the selection of trust roots used to initiate the validation of certificates.
A user can thus select an ISD that she believes maintains a non-compromised
set of trust roots. A challenge with trust agility is to maintain global verifiability
of all entities, regardless of the user’s selection. SCION offers this property by
requiring all ISDs with a link between them to sign each other’s TRCs — thus,
as long as a network path exists, a validation path exists along that network
path. Efficient revocation of trust roots is the second important property. In
today’s Internet, trust roots are revoked manually, or through OS or browser
updates, often requiring a week or longer until a large fraction of the Internet
population has observed such revocations. There is also a long tail of devices
and installations that apply revocations very late or never. In SCION, PCBs
carry the version number of the current TRC, and the updated TRC is required
to validate that PCB. An AS that realizes that it needs a newer TRC can contact
the AS from whom it has received the PCB. Following the distribution of PCBs,
an entire ISD updates the TRC within tens of seconds.

The authentication of control-plane messages has availability as the main
requirement, since the control plane provides communication paths upon which

1Our reason for not using self-certifying identifiers [7, 180] for long-term identities is their
inherent inability to be revoked and the complexities involved with key updates. For short-
term identities, however, we do appreciate their features.

28

2.3 Security Aspects

other mechanisms rely. Once end-to-end communication is established, ad-
ditional entities can be contacted to achieve a more secure authentication of
end entities (e.g., web servers). The Attack-Resilient PKI (ARPKI) [23] is
a highly secure PKI system based on log servers‹ that keep a public log of
all certificates to monitor CAs’ operations. In turn, CAs and validators verify
the content of log servers. By requiring multiple signatures on certificates,
and by adding signatures on all operations, we create a situation where mul-
tiple malicious trusted entities within the same ISD are needed to perform a
man-in-the-middle attack on a single domain. To further increase security, we
combine ARPKI with PoliCert, which enables domains to specify their detailed
security policy [235]. By storing the domain policies in an ARPKI log, policy
consistency and integrity are ensured. In concert, ARPKI and PoliCert achieve
a high level of security, as all PKI attacks we have witnessed in the past decade
would have been avoided in this framework.

The ISDs and the ARPKI system used in SCION address the problem of
CA compromise, as a CA’s authority is scoped to the ISDs in which the CA is
active, and as multiple trusted entities need to be compromised to perform a
successful man-in-the-middle attack. Moreover, the SCION trust roots update
mechanism enables revocation within tens of seconds, enabling quick recovery
from compromise.

More details on SCION’s authentication infrastructure are provided in Chap-
ter 4.

2.3.3 SCION Control Message Protocol (SCMP)

The control plane includes the SCION Control Message Protocol (SCMP),
which is similar to the current Internet control message protocol (ICMP), but
authenticated and adapted to SCION. One challenge in the design of SCMP was
how to enable efficient authentication of SCMP messages, as the naive approach
of adding a digital signature to SCMP messages could create a processing bot-
tleneck at routers when many SCMP messages would be created in response
to a link failure. We thus make use of an efficient symmetric-key derivation
mechanism called Dynamically Re-creatable Key (DRKey, see Section 12.5).
In DRKey, each AS uses a local secret key known to its SCION border routers
to derive on the fly a per-AS secret key using an efficient pseudorandom func-
tion (PRF). Hardware implementations of modern block ciphers enable faster
computation than a memory lookup from DRAM, and therefore such dynamic
key derivation can even result in a speedup over fetching the key from memory.
For verification of SCMP messages, the destination AS can fetch the derived
key through an additional request message from the originating AS, which is
protected by a relatively slow asymmetric operation. However, local caching
ensures that this key only needs to be fetched infrequently. As a consequence,
SCION provides fully secured control messages with minimal overhead.

29

2 The SCION Architecture

2.3.4 DDoS Defenses

SCION offers several complementary defenses against link-flooding DDoS
attacks, which frequently disrupt daily-life communication (e.g., by exploiting
vulnerabilities of IoT devices [138] and launching attacks against IT-security
blogger Brian Krebs in September 2016 [140], or against the DNS infrastructure
causing outages for Twitter, Spotify, and Reddit in October 2016 [137]).

The SCION architecture comes by default with three mechanisms that provide
a strong defense against DDoS attacks:

• Non-registered (or hidden) path segments: An AS can prevent an
adversary from sending traffic to it by not publicly announcing its down-
segment on the path servers. A destination thus cannot be reached, unless
it explicitly permits a sender to send traffic. This approach, referred to as
off-by-default [19], is explained in more detail in Section 7.2.5.

• Short-lived paths: Each SCION path segment has an expiration time,
which is set in a PCB to provide several hours of validity. A careful
administrator of an AS can let a path segment age and only announce it
briefly before the expiration time. For instance when a path segment p
that expires within 5 minutes is publicly announced at a path server, then
p can only be used to attack the destination AS for at most 5 minutes. The
approach here is to publicly announce only short-lived path segments,
and to provide longer-lived path segments only to trusted and verified
senders.

• Multipath communication: Because SCION uses multipath communi-
cation by default, an adversary has to congest all paths instead of only
the single path that is currently used. This approach will prevent attacks
that are unable to congest all network paths simultaneously: for example
consider a multi-homed domain with two providers, with a 1 Gbps link
to each provider. In the current Internet, usually only one of the links
will be the active link that carries all incoming and outgoing traffic. If the
attacker has a capacity of 1.5 Gbps for example, it can congest that link.
Once the victim attempts to change to the other link, the attack traffic will
simply follow and congest the alternative link. With multipath communi-
cation, however, whichever link the adversary clogs, the other link will
still be available and thus communication is always ensured. In summary,
multipath communication forces the adversary to simultaneously clog
all paths that are available to the victim, which requires a larger attack
capacity and access to all paths.

Furthermore, SCION offers two extensions to improve availability and defend
against DDoS attacks:

• The SIBRA extension (Chapter 11) enables fine-grained inter-domain
bandwidth allocations to guarantee availability even during large-scale
DDoS attacks. SIBRA enables fine-grained temporal access, in which

30

2.4 Use Cases

so-called ephemeral paths expire within tens of seconds, putting a rapid
stop to a misbehaving sender.

• The OPT extension (Chapter 12) provides source authentication to pre-
vent attacks with spoofed source addresses. Spoofed victim source ad-
dresses are used in reflection-based amplification attacks to disguise
the attacker’s identity and to redirect the response traffic to the actual
victim [214].

2.4 Use Cases

SCION improves many aspects of the current Internet. This section highlights
some of the applications and use cases that demonstrate unique properties and
benefits offered by the new architecture.

2.4.1 High-Availability Communication

Highly available communication is important in many contexts, in particular for
critical infrastructures such as financial networks and industrial control systems
used for power distribution. Internet outages have been known to wreak havoc
on day-to-day operations, for example preventing ATM withdrawals or payment
terminal operations [238]. SCION’s control-plane isolation through ISDs, its
stable data plane, and its multipath operation all contribute to higher availability.

Business continuity refers to the uninterrupted operation of an organization.
Business continuity is currently highly dependent on communication. We can
witness the increasing inter-connectedness required for business operations
when network outages cause a disruption of a surprising number of operations.
For instance, when Telecom Malaysia wrongly announced 179,000 IP prefixes
to Level3, it caused global outages for 2 hours, even affecting ATM operations
in Sweden [238].

Here are a few examples of sectors where availability is crucial:

• Financial services require highly available communication networks,
for instance for the distribution of stock market data, real-time market
trading, or transaction processing. While critical communication is often
sent over leased lines, it is not economical to pervasively use leased lines
between all communicating parties. In this setting, SCION can offer
higher availability than the legacy Internet at a lower price than a leased
line.
High availability for communication is also important in blockchain
applications such as bitcoin mining, where a disconnected mining pool
does not learn of newly mined coins and is wasting processing on finding
irrelevant coins. Similarly, a disconnected mining pool cannot post

31

2 The SCION Architecture

its found coins, which will likely be ignored once connectivity is re-
established. Both of these cases occur with high probability if the mining
pool’s computation capacity is less than half the total mining capacity,
which is the case for individual mining pools [12].

• Critical command-and-control infrastructures — such as air-traffic, power-
grid, or power-plant control systems, or public safety emergency commu-
nication — require very high communication availability. Communica-
tion disruptions can lead to outages with significant cost for industry and
danger for society.

• Governments require high communication availability especially during
crisis situations. Examples of critical communication include cables
to foreign embassies, law enforcement communication, or access to
databases for verifying documents at a country’s border.

With SCION’s resilience against network-layer DDoS attacks, prevention
of prefix hijacking, and data-plane isolation, communication over the regu-
lar SCION network can achieve a level of availability that approximates the
availability of leased lines. In addition, the SIBRA extension, as described in
Chapter 11, offers an extended level of availability through a concept we call
DILL, which stands for dynamic inter-domain leased line. DILLs provide a
lower bound on the guaranteed bandwidth at inter-domain scale, regardless of
the bandwidth requirements of other ASes.

2.4.2 Path Transparency, Path Control, and Compliance with
Traffic Flow Regulations

Packets do not always directly reach their destination via the shortest path.
Instead, in current practice, many Internet paths take detours. While some
extreme cases of detours are due to prefix hijacking [63,160,162], most detours
are taken for economic reasons or are simply due to the preferred connectivity
of ISPs. As a consequence, traffic that would be expected to stay within a
geographic area is often routed through nearby countries. For example, paths
connecting sources and destinations within Switzerland are sometimes routed
through Frankfurt or London, or traffic that would be expected to stay within
continental Europe is routed through London.

Path control and transparency are important properties when a sender wants
to influence and learn about the ASes that sensitive data will traverse (for
legal, secrecy, or safety reasons). For instance, banking or medical data, which
is typically bound by strict data privacy regulations, can be constrained in
SCION to traverse only selected authorized ASes: a source knows the AS-level
path that a packet will follow based on the hop fields in the packet header.
Such packet-carried forwarding state in the packet header provides not only
transparency, but also path control by letting the source node select the paths
amongst a set of paths provided by path servers. Path transparency and control

32

2.4 Use Cases

enable an organization to achieve compliance with laws or regulations that
require traffic to be constrained within a jurisdiction. These properties can be
further strengthened by SCION’s OPT extension (Chapter 12). In a nutshell,
OPT provides the receiver with a cryptographically verifiable guarantee that a
sequence of ASes were all traversed in the correct order.

2.4.3 Inter-domain Traffic Engineering

In the legacy Internet, only rudimentary forms of inter-domain path control and
traffic engineering are possible. For outgoing traffic, one can at best control
the next ISP, but only if an AS is multi-homed. A little more path control is
available to direct incoming traffic, as an AS can decide to which upstream ISP
to send a BGP update. However, to achieve high availability for outages, an
IP prefix should be announced to each upstream ISP. AS path pre-pending is a
technique that enables a very limited form of path control for incoming traffic;
but this technique will not be available in a secure version of BGP, for instance
in BGPsec [157, 158].

In intra-domain networks, software-defined networking (SDN) has revo-
lutionized path control; for example, Google has achieved higher network
utilization with their B4 system [124]. Analogous to B4’s intra-domain path
control, SCION makes inter-domain path control available through path regis-
tration. An AS can select the down-segments that are announced to the path
servers. Hidden paths can be used, which are only communicated to senders
who are selected to use them (as discussed in Section 2.3.4). Much path control
is available to the sender, who can select which end-to-end path the packet will
follow. We anticipate that this level of path control creates a strong reason for
adopting SCION.

2.4.4 High-Speed Web Browsing

Current congestion control hinders high-speed communication because the
sender and receiver require time to determine their sending rate and to contin-
uously perform congestion control. Consequently, the sending rate is usually
below the maximum possible rate. In SCION, through the SIBRA extension
(Chapter 11), the sender performs a resource reservation with its initial packet,
and the receiver will likely obtain a reservation with a high sending rate, which
it can immediately start to use on the reverse path. With such a reservation, a
given bandwidth is provided, so no congestion control is needed; consequently,
the web server can immediately start sending data at a high rate to the browser.

33

2 The SCION Architecture

2.4.5 Mobility Support

With the proliferation of mobile devices, supporting reliable communication
can be challenging since these devices frequently connect to and disconnect
from (sometimes several) networks. SCION supports high availability and
mobility through multipath communication. Moreover, SCION provides a
header extension to inform the other party of new down-segments, such that
a mobile device that obtains a new address as it connects to a new network
can inform the other party about its new down-segment. Failing paths are
discarded and new paths are dynamically discovered transparently to users and
applications. One challenge, however, is that both sender and receiver might
simultaneously move to a new network, and all the previously established paths
might fail at the same time. In this unlikely scenario, a name resolution server
and a path server need to be contacted to fetch fresh down-segments for the
other party [220].

2.5 Incentives for Stakeholders

While SCION offers a wide assortment of security, availability, and performance
benefits over current-generation networks, its lack of direct compatibility with
BGP may lead to adoption resistance. This resistance can stem from the notion
that the cost of changing to the new architecture will be higher than the benefits
obtained, or that it is risky to take on a new architecture that may not find
widespread adoption. In this section, we discuss deployment incentives to
dissipate such reservations.

2.5.1 End Users

End users in SCION benefit primarily from higher throughput afforded by the
use of native multipath communication, and from lower latency due to path
control and packet-carried forwarding state. SCION paths are selected based
on performance metrics, which translate to better quality of service (such as
audio, video, and file transfers) and generally shorter transfer delays. Although
the increased size of SCION packets sacrifices goodput, we anticipate that the
continuous path optimization of SCION’s multipath system will compensate
for the higher overhead.

End users also benefit from higher availability (i.e., fewer Internet outages)
again due to the multipath communication that is used by default. Even if
the user’s local ISP does not employ SCION, it is possible to provide the
benefits of multipath communication via access tunnels as described in Sec-
tion 10.1.2. Moreover, the SCION-IP gateway (Section 10.3) provides an
incremental deployment approach, which enables users to use SCION without
requiring changes to software on their devices.

34

2.5 Incentives for Stakeholders

Path control gives users higher assurance when performing security-critical
tasks such as online banking or shopping. Using SCION, users gain trans-
parency over the communication path to the destination server, allowing them
to include or exclude specific paths traversing ASes that are not trusted.

The SCION end-to-end public-key infrastructure offers strong assurance that
a contacted web site is the correct entity — fending off man-in-the-middle
attacks that could eavesdrop on or alter information sent on a TLS connection.
As a consequence, users can perform secure transactions over the Internet with
higher confidence.

Finally, SCION extensions (such as Hornet [49] and SIBRA) provide users
with a range of additional benefits, such as high-speed anonymous communica-
tion and guaranteed bandwidth.

2.5.2 ISPs

ISPs can create new revenue streams by offering services based on SCION.
ISPs that enable SCION can create services for customers who demand higher
availability than BGP can provide, but who cannot afford dedicated leased
lines. In addition to lower operating cost, SCION gives early adopters increased
resilience to network attacks, higher availability, and better path control. ISPs
may even offer SCION services to customers of other ISPs through access
tunnels. SIBRA, for example, enables inter-domain traffic guarantees, which
ISPs cannot offer today unless they operate a global network.

Since SCION PCB propagation policies are more expressive than is possible
in BGP, ISPs benefit from finer control of traffic traversing their domain (see
Section 10.9), which can help with traffic engineering.

SCION’s path transparency properties can provide evidence to regulators and
customers that ISPs are not violating network neutrality [194].

Finally, SCION’s ISDs and secure operation help to minimize the impact of
an ISP’s configuration errors, which can simplify ISPs’ operations.

2.5.3 Businesses

Businesses or corporations using SCION benefit from path management for
incoming and outgoing traffic, path transparency and control, attack resilience,
and highly available communication. One particular advantage is that through
SCION, a business can ensure that traffic does not leave an ISD. This is impor-
tant for complying with data privacy laws, which vary from country to country.
For example, a recent European Union (EU) ruling declared that companies
with an EU presence had to comply with EU data privacy laws, and could no
longer make use of “safe harbor” when storing data on servers in approved
countries [62]. It is unclear whether forwarding and caching data also falls
under this ruling, but SCION allows businesses to specify their traffic policies.

35

2 The SCION Architecture

While control over outgoing traffic has so far proven to be an attractive
incentive for businesses, control over inbound traffic should also provide an
attractive feature. Corporations offering network services to a restricted set
of clients (e.g., banks) may want to allow incoming traffic only from those
authorized clients or through authorized ISPs. SCION paths are flexible enough
to allow this by distributing certain paths to specific authorized entities, rather
than announcing them globally.

2.5.4 Governments

Governments using SCION can benefit from the same advantages as businesses,
but additionally benefit from avoiding the use of a global trust root. As shown
in Section 13.8, a global trust root provides a kill switch that can cause entire
networks to be taken offline, which could be particularly damaging in the case
of government networks. Like businesses, governments will also value the path
control facility that will ensure their traffic traverses ISPs they trust.

The open-source nature of the SCION codebase allows governments to build
their own hardware to reduce their reliance on untrusted foreign manufacturers.
The codebase can also be inspected and maintained by trusted developers.

2.6 Deployment

Deployability plays a key role in the success of any network architecture. To
this end, we have designed SCION to be deployable (by both ISPs and end
users) without requiring substantial changes to the existing infrastructure.

2.6.1 Incremental Deployment

As a minimum, an ISP needs to deploy only a single border router capable of
encapsulating and decapsulating SCION traffic as it leaves, enters, or traverses
its network. SCION ASes must also deploy certificate, beacon, name, and path
servers. These servers can run on commodity hardware and can optionally
be replicated for increased availability. The current version of the SCION
codebase uses IP for internal AS communication, which allows the use of
existing intra-domain networking infrastructure and configuration.

We envision that ISDs will grow organically within an area with homoge-
neous trust. Tier-1 ISPs within those ISDs would become core ASes. SCION
facilitates the evolution of ISD and AS structure through efficient updates to
the TRC.

Deployment of SCION to end-user sites (e.g., homes or businesses) is de-
signed to require little effort as well, initially needing no changes to hosts or
internal network communication equipment. For initial deployment, we achieve

36

2.6 Deployment

customer-friendly conditions through a gateway device that can be installed in
a network to enable both SCION and standard Internet communication. The
SCION-IP gateway replaces a home access router and transparently enables
any type of communication (legacy IPv4/IPv6 or SCION), as described in
Section 10.3.

2.6.2 Deployment Caveats and SCION Disadvantages

The deployment and structure of ISDs is hard to predict, as is which ASes
within an ISD will or should become core ASes. We envision that among
a group of ASes that deploy a top-level ISD, the AS or ASes that can form
peering agreements with core ASes in other ISDs should become core ASes in
their own ISD. However, SCION itself does not require or impose strict rules
regarding the allocation of ISDs; ISDs can overlap, which means an AS can
belong to several ISDs. Sub-ISDs are possible as well, offering the flexibility to
start an ISD without needing to peer with core ASes of other ISDs and enabling
finer-grained control over routing isolation and authentication. In this context,
the important properties SCION offers are path control and transparency: as
long as communicating hosts can select and inspect the paths of their packets,
the question of ISD partitioning is of secondary nature.

A challenge that could arise is that each AS will attempt to be its own ISD
or will want to be part of the ISD core. While too many top-level ISDs will
pose a problem for SCION scalability, we observe that economically sound
decisions will lead to larger ISDs due to economies of scale — because the
startup costs of a core AS are higher than those of a non-core AS, the operation
of a large ISD will amortize the cost over more non-core ASes. Moreover, ASes
preferentially associate with larger ISDs, which can offer better connectivity
to other ISDs as well as to other ASes within the ISD. On the other hand, ISD
growth is limited to the extent that entities can agree on the ISD’s TRC (i.e.,
roots of trust). Finally, ASes desiring to be part of the ISD core are assessed in
the same way in which current ASes assess peering: an AS is permitted into
the core if the current core ASes deem it to be large enough to fulfill core AS
duties (which include, for example, participating in beacon and path server
replication).

SCION ASes need to manage cryptographic keys, which requires additional
effort to securely administer. As a security architecture, every AS has to have a
public-private key pair, and obtain a signature on the public key. Although man-
aging cryptographic keys can be a challenge for some ASes, it is a necessity for
any secure network architecture. In our development, we are building systems
to simplify the overhead of managing cryptographic keys, for instance through
our CASTLE system [169], which offers a local low-rate CA environment built
from off-the-shelf components. To further mitigate the risks associated with the

37

2 The SCION Architecture

management of cryptographic keys, SCION reduces the effect of key loss and
compromise by offering approaches for resilience and quick recovery.

As expected in architectures with PCFS, packet headers are necessarily larger.
Larger headers place a limit on goodput, since payload space is traded for
header space. The current SCION codebase implements the HF as an 8-byte
field. Since every AS on an end-to-end path has to be represented through a
corresponding HF, the overhead increases linearly with the number of ASes on
the path. However, given that the average AS path in today’s Internet is four
hops long (and decreasing) [66,141], the overhead introduced by SCION should
not exceed around 50 bytes per packet on average. The performance penalty
of transmitting more packets appears reasonable since per-packet forwarding
performance can be faster than for forwarding-table-based architectures. While
the default header size has not turned out to be a performance disadvantage
in our testing environment, many of the proposed SCION extensions further
increase the header size.

Due to path dissemination and registration dynamics, SCION beacon and
path servers can incur a high overhead under specific circumstances. For
example, if a given link’s state were to fluctuate frequently between available
and unavailable (due to error, hardware fault, or an adversary), the beacon
server would need to constantly update the set of paths that include that link,
and serve new paths excluding that link. We expect that this case will be rare,
but also easily detectable. Additionally, higher quality (uptime, availability)
links will have a higher probability of selection, minimizing the impact of rapid
path fluctuations.

We believe that the basic building blocks of SCION are relatively straight-
forward to understand and provide many beneficial properties for applications.
However, as more extensions and alternative PKIs are added to the architecture,
the operational complexity of the architecture increases correspondingly. We
believe that this additional complexity is worth the security, efficiency, and
availability guarantees provided by the extensions. It is ultimately up to the
networking and research community to decide which of these extensions will
be deemed worthwhile for pervasive deployment.

2.6.3 SCION Network Deployment

We have deployed a global SCION network, which we are actively using to vet
SCION’s functionality and security. The current network has about 50 border
routers and servers deployed in ASes around the world, with new nodes joining
the network on a weekly basis. The deployment status as of December 2016
is described in more detail in Section 10.1.4. Details and requirements for
sponsoring a SCION node can be found on our website. The SCION testbed,
enabling any researcher to use the SCION network, is described in more detail
in Section 10.7.

38

2.7 Extensions

2.7 Extensions

SCION’s extensible architecture enables new systems that can take advantage
of the novel properties and mechanisms provided. As compared to the current
Internet, most of the benefits can be afforded through the use of PCFS, path
transparency, and control. We briefly describe three systems that have been
built as extensions to SCION.

Path validation. SCION, through its use of PCFS, paves the way for the
Origin and Path Trace (OPT) mechanism (Chapter 12). OPT enables the
sender, receiver, and routers to cryptographically verify the path that the packet
traversed. By leveraging the DRKey mechanism (Section 12.5), routers can
efficiently derive their key, verify the path, and update the path validation fields.

Anonymity and privacy. PCFS also provides advantages for privacy. With
PCFS and path transparency, the source is able to select paths that appear more
trustworthy (e.g., those that do not traverse certain ASes). In addition, the
packet header can be further obfuscated such that ASes on the path cannot
learn identifying details about the source or the destination, unless they are
immediately connected to one of them. Proposals such as LAP [113] and
HORNET [49] leverage SCION’s infrastructure to offer high-bandwidth and
low-latency anonymous communication.

DDoS defense. The hierarchical organization of ASes into a manageable
number of ISDs enables neighbor-based contracts between pairs of core ASes,
which in conjunction with path segments inside the ISDs allows for establishing
efficient bandwidth guarantees between any two end hosts (more details are
presented in Chapter 11 and Section 13.7.1). Such bandwidth guarantees are
provided by the SIBRA extension to prevent DDoS attacks at the architectural
level: independent of the number of distributed bots, end hosts obtain protection
against Internet-wide link-flooding attacks, one of the major threats in today’s
Internet. The SIBRA extension offers powerful mechanisms for DDoS defense,
as it guarantees a lower bound on the bandwidth between any pair of ASes [22],
which cannot be lowered even by a large-scale botnet using new types of DDoS
attacks such as Crossfire [129] and Coremelt [231].

2.8 Main Contributions

The SCION architecture introduces many new concepts and contributions.
Although prior work has proposed related concepts and methods, many of
which we build upon, we believe that SCION has advanced the state of the art

39

2 The SCION Architecture

by creating a coherent architecture that can be deployed and used in practical
environments.

Throughout the book, we highlight some chapters or sections with a diamond
symbol in the title to indicate research, engineering, and deployment contribu-
tions that we believe are particularly important and interesting. In the remainder
of this section, we briefly describe these contributions.

2.8.1 Isolation Domains

The concept of network partitioning and hierarchical domains has been consid-
ered since the early days of the Internet [34,46,47,56,57,127,134,232,242,259].
In addition to the scalability sought by previous approaches, SCION’s concept
of isolation domains (ISDs) (Chapter 3) provides strong security guarantees
including meaningful trust roots and the absence of global kill switches. Isola-
tion domains provide control-plane isolation, trust root scoping, and data-plane
transparency. Most SCION protocols and extensions rely and build on these
properties.

As a design principle, SCION does not require any globally trusted party, and
ISDs can operate independently and autonomously. However, there must be a
way for them to join the network and be discovered. To this end, in Chapter 5,
we present the ISD coordination mechanism, which operates in a distributed
fashion without any globally trusted entities. With our mechanism, individual
trust decisions made solely by ISDs enable global trust verification, similarly to
the PGP web of trust [267], although operating in the constrained environment
of large-scale ISPs. The mechanism is based on the rule that trust validations
follow routing paths (i.e., commercial relationships). To balance the design
tradeoffs, our system allows inconsistencies but makes them visible. It enables
determination of network topology and connectivity, from any point of the
network, without any central global entity.

2.8.2 Authentication

Another main contribution is SCION’s authentication infrastructure, which
leverages the properties offered by isolation domains (Chapter 4). TRCs con-
tain the roots of trust of the SCION authentication infrastructure (Section 4.2.1),
providing scoped trust, fast and flexible trust root updates, and transparent trust
relationships. The control-plane PKI (Section 4.2.3) is a high-availability
PKI and is designed to secure SCION’s control plane. It ties TRC and cer-
tificate distribution to the dissemination of PCBs, thus removing any circular
dependencies between routing and control-plane PKI operations, which results
in efficiency and high availability. On the other hand, the end-entity PKI
focuses on achieving high security (see details in Section 4.4). It leverages two
recent proposals (i.e., ARPKI [23, 24] and PoliCert [235]). First, it provides

40

2.8 Main Contributions

resilience against a selectable number of compromised trusted parties. Second,
it allows domain owners to express flexible policies on their TLS certificates
and connections.

The control-plane PKI provides network-level authentication, enabling in-
network and end host source authentication, which in turn facilitates construc-
tion of a variety of secure network protocols. The OPT protocol (Chapter 12)
is a source authentication and path validation scheme. It enables end hosts to
enforce path compliance according to their path selection, and moreover, it
achieves high-speed and stateless operation on routers. OPT relies on the
DRKey scheme (Section 12.5), an efficient key derivation mechanism. DRKey
allows network entities (e.g., border routers) to derive symmetric keys (shared
with destinations) with a negligible computation overhead and without keep-
ing per-destination state. Due to these properties, we use DRKey for the
authentication of SCMP messages (SCMP being SCION’s equivalent of ICMP
— see Section 4.2.5 and Section 7.6). To the best of our knowledge, it is the first
Internet-scale control message protocol with authenticated messages.

As a consequence of scoped trust and isolated control plane, SCION ensures
an absence of global kill switches (Section 13.8). No entity can cause an
outage of an ISD by performing an operation outside the ISD (such as the
revocation of an important key).

2.8.3 Novel Mechanisms and Protocols

Due to its architecture, SCION can intrinsically support multiple novel mech-
anisms and protocols. For instance, RAINS provides a next-generation
name resolution system (Chapter 6). The control plane allows the definition
of flexible path policies, enabling implementation of BGP route policies
and definition of policies that cannot be expressed in BGP (Section 10.9). Fur-
thermore, SCION’s data plane (Chapter 8) provides highly efficient and
secure packet forwarding. The forwarding path is encoded within each packet
and is cryptographically protected. To make a forwarding decision, the border
router checks whether the relevant information is fresh and was authorized by
its AS. To this end, efficient symmetric cryptography is used. Moreover, the
cryptographic mechanisms required are widely supported by modern hardware;
thus, a high-speed SCION border router can be built on commodity hardware.

Another example is the AS-level anycast infrastructure (Section 7.5),
which provides a service-oriented infrastructure enabling a packet to be deliv-
ered to the nearest server of a given service. This infrastructure is an especially
powerful mechanism when used for building services that can take advantage
of hierarchical caching.

Although path infrastructures have also been explored in other Internet ar-
chitectures, SCION introduces a novel secure path revocation system (Sec-
tion 7.3). Our path revocation system works on the link level. Its main novelty

41

2 The SCION Architecture

is a traffic-driven fault detection and failed-link revocation mechanism. The
revocations are disseminated as responses to data packets that encounter a failed
link. In this design, the system quickly disseminates revocations only to entities
that have used failed paths, thus avoiding the overhead of informing entities
that do not use those paths. To the best of our knowledge, it is the first secure
and practical inter-domain link revocation scheme. The scheme also provides
authenticated failed-link localization.

2.8.4 Resource Allocation

Another main contribution is SIBRA (Chapter 11), a SCION extension that
implements global bandwidth resource allocation. SIBRA’s main objective is to
provide DDoS attack defense, and it is realized through end-to-end bandwidth
allocation. The system provides botnet-size independence, a property that no
prior DDoS defense system could achieve. A main feature of SIBRA is its
per-flow stateless fastpath‹ packet forwarding.

2.8.5 Deployment and Evolvability

Finally, SCION makes the following deployment contributions. The SCION-
IP gateway (Section 10.3) provides an easy and flexible way of interconnecting
SCION with the current Internet. It supports a variety of connection and
deployment variants. The gateway can be used by ISPs, organizations, or
individual users to bootstrap and benefit from the deployment of SCION even
for their legacy clients and legacy IP communication.

Taking into consideration the lessons learned from Internet deployment,
SCION is designed to support and deploy new mechanisms. Flexible extension
mechanisms are built into both the data and control planes (Section 15.1.4 and
Section 15.3.4), which enables the architecture to evolve. Furthermore, in the
spirit of evolvability and maintenance, SCION supports algorithm agility
(Section 17.1), which is crucial in the context of cryptographic algorithms (as
over time they become weaker or become vulnerable to a newly discovered
attack).

42

3 Isolation Domains (ISDs)

LAURENT CHUAT, ADRIAN PERRIG,
RAPHAEL M. REISCHUK, BRIAN TRAMMELL

This chapter discusses SCION isolation domains in more detail. As briefly
sketched in Chapter 2, an isolation domain (abbreviated as ISD to distinguish it
from the common abbreviation ID) constitutes a logical clustering of the Inter-
net’s most coarse-grained organizational unit, namely that of an autonomous
system, or AS for short. An AS is a self-contained network administrated
by a single entity (e.g., by an Internet service provider (ISP) or a university)
and communicates with other ASes through well-defined interfaces based on
contractual business relations. Figure 2.1 on Page 18 sketches how ASes are
grouped into ISDs.

To join an ISD (i.e., become a member of an ISD), an AS needs to be
connected to it, and needs to accept its regulations and policies. An ISD specifies
accepted authorities, which are commissioned and authorized to provide digital
identities and cryptographic keys for the entities inside the ISD.

As we will see in more detail, the term isolation refers to a property of ISDs
that applies to the network’s control plane only. Regarding the network’s data
plane, the important properties of ISDs are transparency and control. In other
words, SCION does not isolate end hosts, nor does it limit communication or
facilitate censorship, as we explain in more detail in the FAQ on Page 409.
SCION rather provides members of ISDs with communication guarantees, with
control over packet routes, and with transparency over forwarding paths.

The natural questions to ask are thus: How can isolation in the control plane
achieve transparency in the data plane? Why is isolation in the control plane
necessary at all? How can the current Internet be structured to best achieve a
desirable level of isolation? We attempt to answer these and related questions
in this chapter.

3.1 Why Isolation?

Before considering the details of how ISDs are implemented in SCION, we are
going to step back and take a look at the rationale behind structuring ASes into

43

3 Isolation Domains (ISDs)

ISDs. We first note that the concept of letting each ISD agree on individual
policies, keys, and authorities naturally provides an isolation property among
groups of ASes. To indicate the benefits of such a property, we observe that
isolation between ASes is lacking for most features of today’s Internet. Using
the two examples of authentication and routing, we then illustrate why the lack
of a suitably granular isolation property is the main reason for the security and
availability issues that plague the current Internet.

3.1.1 Isolation for Authentication

To understand the problems related to the current Internet’s lack of isolation, one
may consider its authentication infrastructures. At a high level, authentication
infrastructures enable users to verify digitally signed information (such as
names, addresses, routes), assuming that the cryptographic keys necessary for
the verification of such information are correctly distributed. Distributing and
authenticating cryptographic keys in environments with heterogeneous trust,
however, poses a major challenge. This holds for the two most prominent
models of existing authentication infrastructure: monopoly and oligopoly (also
referred to as oligarchy in the literature).

Monopolistic Infrastructures

Infrastructures based on a single root of trust (or a small number of keys held
by a few entities), such as DNSSEC, suffer from the innate problem that all
involved entities must agree on a common root of trust and on the entity that
should manage the root of trust. In the case of DNSSEC, no less than the
entire world has to agree on a common root. The fear of global surveillance
paired with an increase in power of individual nation-states has led ICANN,
the organization responsible for allocating and assigning names in the root
zone of DNS, to issue a statement recommending globalization of Internet
governance [121]. On 1 October 2016, ICANN officially entered the private
sector and transitioned to a “multi-stakeholder model” as its contract with the
U.S. government expired [122].

Besides the administration problem, there is also a serious security hitch
with monopolistic infrastructures: a single root of trust evidently constitutes
a single point of failure. In August 2016, Microsoft inadvertently leaked a
highly permissive signed policy, which was then referred to as a “golden key”.
This policy could not only be used to unlock tablets and phones sealed by
Windows Secure Boot (e.g., to install an alternative operating system), but
also to enable backdoors for mass surveillance purposes [69, 173, 191]. It is
even believed that Microsoft will be unable to fully revoke the policy [252]. In
the case of DNSSEC, a compromise of the global trust root can cause severe
damage to the entire world, essentially to each host worldwide that relies on

44

3.1 Why Isolation?

DNSSEC, directly or indirectly. We observe a significant kill switch here: the
revocation of a DNSSEC certificate for a top-level domain name (such as .com)
would remove that entire top-level domain since its validity would no longer be
verifiable and thus the name resolution would fail. Interestingly, this kill switch
becomes more severe when more cryptographic protection is added to today’s
domain name system. More details on Internet kill switches are provided in
Section 13.8 on Page 325.

Oligopolistic Infrastructures

Infrastructures based on multiple roots of trust, such as the TLS infrastructure,
suffer from weakest-link security — that is, any of the multiple roots, when
compromised, may cause severe damage to any of the entities in the infrastruc-
ture. In other words, each member of the oligopoly has global authority. For
the case of TLS, any certification authority (CA), possibly run by a national
intelligence agency or by a malicious organization, may issue rogue certificates
for any TLS domain. These rogue certificates will be recognized as valid by
today’s standard browsers.

Both the monopoly and the oligopoly model have in common that the scope of
keys is unrestricted. The compromise of any cryptographic signing key enables
man-in-the-middle attacks against billions of hosts around the world. The attack
vector of these large-scale attacks can meaningfully be diminished through the
concept of isolation by structuring the large number of existing entities into
isolated domains, each with its authorities and individually managed keys, and
by limiting the scope of the keys to the respective domains.

SCION resolves these issues by restricting the scope of root keys to ISDs,
and enabling clients to select the TRC(s) they want to use.

3.1.2 Isolation for the Propagation of Routing Information

The process referred to as inter-domain routing is carried out in today’s Internet
by the Border Gateway Protocol (BGP). At a high level, every AS advertises to
other ASes the IP address space for which it is responsible. The information
is propagated to other ASes such that, after some convergence time, every AS
should have learned how to reach any other address in the Internet.

This design works well in most cases, but is vulnerable to misconfigurations
and attacks: a misconfigured AS can unintentionally attract traffic by advertising
wrong addresses to its direct neighbors. More severely, a malicious AS can
launch IP prefix hijacking attacks by deliberately advertising addresses that
the AS does not control. The lack of isolation can lead to problems such as
unavailability and espionage and affect virtually every host in today’s Internet
(see Section 1.1.4 on Page 6 for examples of concrete incidents).

45

3 Isolation Domains (ISDs)

By leveraging the isolation principle, SCION separates the routing infras-
tructure in one ISD from those of other ISDs and thus removes a cause of
many instances of unavailability in today’s Internet. More precisely, SCION
addresses and routes to entities are valid only within the respective ISD. This
means, in particular, that entities outside an ISD cannot affect communication
within that ISD.

An interesting question is whether the isolation of failures and misconfig-
urations may result in undesirable confinements, such as the unreachability
of destinations outside the source ISD. Fortunately, the opposite is true. Not
only is the availability of communication increased due to the impossibility
of external attackers intruding into isolated routing planes, but also because a
well-manageable number of ISDs permits the scalable execution of a secure
inter-ISD routing protocol with cryptographically protected route advertise-
ments. Thanks to the limited number of ISDs, cryptographic keys are easily
disseminated across all ISDs. These keys are used to validate the authenticity
of routing updates across ISDs.

Definition: Isolation Principle

Intuitively, the isolation principle separates the control plane of a domain
(e.g., an ISD) from outside influences. More formally, let VE

D be the view
of the control plane for a given domain D residing in an environment E,
i.e., VE

D is the set of all messages exchanged inside D’s control plane in
environment E. By environment, we denote the set of outside entities with
which D can communicate. We say that the isolation principle holds for
domain D if for all environments E, we have

VE
D « V∅

D

where ∅ is the empty environment and « denotes indistinguishability
between two views with respect to intra-domain routing messages.

Definition: Isolation Domain (ISD)

An ISD is a set of connected ASes (i.e., forming a connected graph) that
satisfies the following conditions:

• All member ASes accept the trust roots and policies described in
the trust root configuration (see Page 63) as managed by the ISD
core.

• The ISD satisfies the isolation principle, i.e., its control plane is
protected against outside influences.

46

3.2 The ISD Core

3.2 The ISD Core

Each ISD is administered by the ISD core, a consortium of one or multiple
autonomous systems referred to as core ASes.

Definition: ISD Core

The ISD core is formed by a set of directly connected ASes, the core ASes.
All members in that set agree that they form the ISD core. They also agree
to perform the following functions:

• manage and distribute the ISD’s TRC;
• sign the TRCs of neighboring ISDs and endorse other ISDs;
• issue certificates to all ASes in the ISD;
• provide connectivity to neighboring ISDs;
• generate and disseminate inter-ISD path-segment construction bea-

cons (PCBs), also called core PCBs;
• generate and disseminate intra-ISD PCBs;
• provide highly available services (beacon, name (RAINS), path,

certificate, SIBRA, and time servers); and
• maintain a list of all recognized ISDs.

The tasks of the ISD core are broadly divided into two categories: manage
the control-plane public-key infrastructure (PKI), and provide global (inter-ISD)
and local (intra-ISD) connectivity. For the following discussion, we assume
familiarity with the basic SCION concepts described in the previous chapter.

As a foundation for the control-plane PKI, the core ASes establish the trust
root configuration (TRC). Specifically, a TRC defines the roots of trust that
are used to validate bindings between names and public keys or addresses, and
defines a policy on how the TRC can be updated. The ISD core manages and
distributes the TRC. For TRCs to be accepted by other ISDs, they must be
signed by trust roots of neighboring ISDs. Sections 4.1 and 4.2.1 provide more
information on TRCs, their creation, and their dissemination. The core ASes
issue certificates for other ASes in the ISD — the TRC contains the root of trust
public keys to verify these certificates. To enable these operations, core ASes
operate the core certificate servers.

The second major task of the ISD core is to provide local and global con-
nectivity. Core ASes connect to core ASes in other ISDs. To discover paths,
intra-ISD and inter-ISD path-segment construction beacons (PCBs) are emitted
periodically. For path exploration, path registration, and path resolution, core
ASes run the core beacon and path servers. Moreover, every core AS runs a
time synchronization service.

When a new ISD is created, its core must make an announcement to other
ISDs. Since we do not want to rely on any centralized entity to decide on the
fate of a new ISD, we use a distributed ISD coordination process, which is

47

3 Isolation Domains (ISDs)

presented in the following section. Through the ISD coordination process, the
ISD core maintains a list of existing ISDs (and their TRCs).

3.3 Coordination Among ISDs

One of the distinguishing properties of the SCION architecture is that it was
designed to operate without any global authority. Developing and deploying a
decentralized authentication infrastructure on a global scale has been a long-
standing problem [35, 97]. In SCION, each ISD must be able to derive a
list of existing ISDs. This would be straightforward if we could assume the
existence of a trustworthy authority, or if all participants could agree on who
should be able to join the network, but global consensus is hard to achieve in an
environment with mutually distrusting entities. If consensus was required, some
ISDs could collude and prevent a new ISD from joining the network; a single
entity could also create and control multiple ISDs with the only intention of
gaining influence, which is referred to as a Sybil attack [72]. Instead of relying
on consensus amongst all existing ISDs, we focus on providing transparency
and accountability to deter misbehavior.

The mutual discovery of ISDs follows a distributed approach in which every
ISD builds its own local view of the global ISD topology. Our approach
relies on local consistency and on neighbor-based propagation of authenticated
information. More precisely, new ISDs are announced in advance — to avoid
identifier collisions — by neighboring ISDs, through beacon extensions. This
approach tolerates bogus ISDs (i.e., ISDs with globally unique identifiers but
without legitimate purpose). Transparency, however, allows such illegitimate
ISDs to be detected and ignored.

Each ISD is identified by a unique integer and a description. If a dispute
arises between two or more new ISDs regarding the attribution of an identifier,
these ISDs need to pick a new identifier to announce, or the other ISDs need to
decide which announcement they want to support for a given identifier (if no
agreement is reached between the conflicting ISDs). We present the details of
ISD coordination1 in Chapter 5.

3.4 Name Resolution

The mechanism for ISD coordination that we sketched in the previous section
allows each ISD to obtain a list of other ISDs; in this section, we describe how

1In distributed systems, consensus can only be achieved by assuming either (a) the existence of
a trusted centralized authority, or (b) resource parity and coordination among entities [72];
the term “coordination” as used in this context, however, does not imply that all ISDs must
reach a complete agreement. ISD coordination only designates the mutual discovery and the
announcement of ISDs.

48

3.4 Name Resolution

consistency is maintained for name resolution across ISDs without any global
authority. In summary, SCION uses a DNSSEC-like protocol called RAINS
(described in detail in Chapter 6), in which delegation from one zone to another
is performed by a signature identifying a zone key (ZK) for the subordinate
zone, with unique root zone keys (RZK) per ISD. Each such root zone contains
delegations to the authority for each top-level domain (TLD), which in turn
handles resolution for second-level names, and so on.

.org .com .abc

a.org b.org a.com b.com d.abc
… … … … …

ISD2ISD1 ISD3

ZK ZK ZK

ZK ZKZKZKZK

RZK RZK RZK

Figure 3.1: ISDs delegate name resolution to the TLD authorities. ISD2 has
refused to delegate to the authority of TLD .abc, while ISD1 oper-
ates a shadow authority for TLD .abc (see text below). Delegation
assertions are discussed in Section 6.3 on Page 106.

Clients connected to the SCION Internet from different ISDs may therefore
have different views of the global namespace (for example, ISD1 and ISD2 in
Figure 3.1 have no direct delegations to the .abc TLD). This is an unavoidable
consequence of isolation as an architectural principle: it makes little sense to
build inviolate isolation into each ISD, then delegate the first step in most com-
munication establishment (name resolution) to a non-isolated global DNS root.
On the other hand, a globally consistent namespace is one of the advantages of
the Internet as a platform.

This inconsistency is mitigated by three factors, which the governance models
presented in the next section are intended to support:

• In the typical case, ISDs simply certify authorities for TLDs as shown by
the black arrows in Figure 3.1. In other words, each ISD will delegate
to the same authority for a given TLD, and the chain of signatures will
be identical beyond the ISD root signature of the TLD authority. This

49

3 Isolation Domains (ISDs)

replaces a single global root with a collection of global roots, which are
mostly, but not completely consistent.

• The remaining inconsistency is generally a consequence of applications
of isolation: (a) An ISD may refuse to delegate to an authority for a
given TLD, because that TLD is of no use to clients connected to it.
This case is depicted by the interrupted red line in Figure 3.1. The
possibility of refusal offers transparency and circumvents censorship in
that any alternative ISD may be used for name lookups. (b) An ISD
may also operate an alternate authority for a TLD, providing additional
due diligence on new registrations or blocking registrations intended for
abuse by malware, for example. This case is depicted by the dotted gray
line in Figure 3.1.

• By adding TLD authority differences to the information that ISDs learn
from each other, this inconsistency can be made transparent at the inter-
ISD level. Anomalies such as name squatting would thus become trans-
parent and could actively be countered.

We refer the reader to Chapter 6 for the details of name resolution in SCION,
and to Section 4.3.1 for the authentication thereof.

3.4.1 Reconciling Naming Consistency and Isolation

The properties of the name resolution system implied by isolation as a first
principle of the architecture mean that, while the information associated with a
domain name (addresses, authorities, etc.) can be guaranteed to be consistent
within an ISD, since each ISD has a global root, naming consistency cannot be
guaranteed across ISDs. Some of this inconsistency can serve to implement
the policies of each ISD (e.g., filtering malware domains published in TLDs),
but other inconsistency is not desirable (e.g., an ISD creating and reserving a
large number of TLDs through name squatting). Managing this inconsistency
requires inter-ISD coordination. This process is detailed in Section 6.5, which
describes the Naming Consistency Observer (NCO), a process run cooperatively
by all ISDs to make isolation-based inconsistency transparent to all participants
in the SCION Internet, thereby providing a method to deter non-desirable
inconsistency.

The NCO also provides a way for the SCION Internet to cleanly inherit the
current global naming root. The set of TLDs accessible through SCION will
necessarily be inherited from the ICANN global root, and changes to this set
of TLDs will continue to be made according to ICANN’s policy development
process. The set of TLDs that each ISD is presumed to start from comes from
this global root. ISDs can, of course, sign additional TLDs not present in the
global root, and the visibility of these TLDs through the NCO makes it possible
for other ISDs to determine whether they want to sign them as well; it may also
make isolated versions of these TLDs available.

50

3.5 ISD Governance Models

Whether this mechanism will eventually replace the ICANN management of
the global root, or act as an input to ICANN’s process for adding new TLDs to
the set in the global root is a future question for the Internet community at large.
In any case, the global ISD proposed in Section 3.5.4 provides unmodified
access to the ICANN global root.

3.5 ISD Governance Models

Given how central ISDs are to the SCION architecture, the qualities of a SCION-
enabled Internet are in part determined by the policies by which ISDs are created
and connected to the Internet, and how policy-level conflicts among ISDs are
resolved. In this section, we examine several possible sets of policies for inter-
ISD governance, and their implications for SCION’s operation, incremental
deployment, and transition to a SCION-based Internet.

These models are presented primarily to explore the space of possible gover-
nance structures for a SCION-based Internet; we do not envision or condone
any one model as the way forward. Since they are concerned solely with non-
technical conflict resolution among ISDs, elements of different models can
and will be combined. We anticipate that ISD creation will occur organically
following a combination of these models.

Some ISDs may evolve from existing tier-1 ISPs, indicating they will operate
largely as described in Section 3.5.1. On the other hand, jurisdictions may
insist on sovereign authority as in Section 3.5.2, as the root of trust for routing
is a matter of law or regulation; in these jurisdictions, only the national ISD
would be available. In any case, it is likely that the initial governance structures
will at least bootstrap off the current multi-stakeholder model as embodied by
the Internet Engineering Task Force (IETF), the Internet Assigned Numbers
Authority (IANA), regional Internet registries (RIRs), and the Internet Corpora-
tion for Assigned Names and Numbers (ICANN), even if new SCION-centric
governance organizations also evolve. A SCION Internet, in which ASes are
free to be members of multiple ISDs, may evolve both small isolation service
providers (IsSPs) (Section 3.5.3) and a global default domain. These models
will interact with the transition mechanisms described in Chapter 10.

3.5.1 A Bottom-Up Model: Grassroots Deployment

In a bottom-up model, some existing ISPs would begin by creating ISDs and
offering SCION services within their isolation domains to their customers. Full
connectivity within the SCION Internet is therefore provided by tunnels between
SCION islands over a traditional Internet substrate. Eventually, interconnections
or mergers between ISDs will lead to organic growth and increased availability
of SCION connectivity and decreased reliance on tunneling, as experience with
the transition to the IPv6 Internet has shown. ASes would become connected to

51

3 Isolation Domains (ISDs)

the SCION Internet through their existing transit relationships with upstream
providers, and existing peering relationships at Internet exchange points (IXPs).
This incremental deployment model is described and analyzed in Section 10.1.2.

In terms of governance, this model leans on existing structures to bootstrap
itself. ISD numbers would be administered by IANA according to procedures
established through the IETF standards. The SCION core protocols would
therefore need to be published as IETF standards as well. Given the differences
in areas of policy expertise and the relative scarcity of ISD numbers, IANA
would then delegate this assignment to the RIRs. AS numbers would continue
to be assigned by RIRs according to current policies; an Internet-connected
ISP’s AS numbers could be used in SCION as well. Addresses for SCION-
attached networks would be administered as addresses in the legacy Internet,
and assigned by the RIRs according to their own policies and subject to their
policy development processes. Given exhaustion of IPv4 addresses in each
region, growth in the SCION Internet would therefore predominantly happen
using IPv6 addressing. The naming root for each ISD would be provided by
ICANN, according to its policy process.

The primary advantage of this model is ease of transition and the relatively
lightweight coordination required. ISPs and ASes can each decide according to
their own requirements to join the SCION Internet. To do so, downstream ASes
may either wait for their upstreams to join, or purchase transit from an existing
member of an ISD and tunnel SCION traffic to it. Large ISPs may enter into
agreements with others to form a consortium to operate an ISD; tier-1 ISPs may
even decide to operate ISDs on their own.

These actors would interact with each other in regulatory, governance, and
technical forums in which they already participate: IETF, RIR, ICANN, and
regional network operator groups. Multilateral conflict resolution would be-
come a matter of each RIR’s policy development process, and bilateral conflict
resolution a matter of national or international contract law; new governance
organizations may eventually emerge to take over parts of these roles, as neces-
sary.

This model would mirror the present Internet, which may be seen as both
advantageous and disadvantageous. While the present model does scale well in
terms of administrative overhead, an organic transition inherits all the strengths
and weaknesses in Internet governance of the present Internet, and current
vested interests would retain their advantages. However, given the inertia
inherent in the Internet industry, we envision this model as the default one for
establishment of a SCION Internet.

3.5.2 A Top-Down Model: Sovereign Authority

The grassroots model may not be acceptable within some jurisdictions, which
may insist on sovereign authority over Internet traffic and interconnections.

52

3.5 ISD Governance Models

Since one property of an ISD is a coherent set of policies and regulations for
managing the addition and removal of ASes from the ISD, and since one of the
widely accepted rights and responsibilities of sovereign entities in international
law is the resolution of conflicts within their territory, it is natural to assume that
some sovereign states will be willing to form ISDs, i.e., country-based ISDs.

A sovereign authority ISD would be created by an internationally recognized
sovereign power. Interconnections between sovereign authorities would be
governed by bilateral or multilateral treaty. A multilateral SCION Internet
treaty could be overseen by an existing international body, for example a United
Nations agency such as the International Telecommunication Union (ITU).
Connection to a nation’s ISD is wholly a matter of national law and regulation,
subject to the terms of the treaties governing interconnections. By contrast,
interconnections between sovereign authority ISDs and other ISDs would be a
matter of international contract law.

This model has several apparent advantages:

• National-level lawmaking and regulatory bodies for telecommunications
already exist in most sovereign states, and they already have competence
for monitoring the activities of telecommunication service providers
(ASes) within their territory. National isolation makes enforcement of
Internet law much easier, as the ambiguity about the law in effect at the
source of traffic or location of content is removed by the nature of the
routing topology.

• Countries with policies on cross-border traffic routing, whether to better
regulate the handling of Internet traffic or to defend their citizens against
surveillance or other malfeasance not subject to that country’s law, will
have in-country routing by default, since all communications between
two ASes in an ISD stay within the ISD. If a country has laws restricting
the circulation of certain types of data (e.g., stating that medical records
cannot leave the country), then an ISD following this model can be used
to achieve compliance.

• Some national authorities already act as roots of trust for their citizens and
registered corporations, and there are advantages in identity management
if a citizen’s or corporation’s identity on the Internet is vouched for by
the government, which usually has mechanisms for real-world identity
verification.

Unfortunately, a top-down approach also has some severe drawbacks:

• This model would require sovereign entities to manage the networks
in the ISD core. However, most countries are not in the business of
providing Internet service, and would need to develop the competence
for the technical management of the ISD core. In countries with an
incompletely privatized or former incumbent national telecom provider,
the contract for running the ISD core could naturally be given to that

53

3 Isolation Domains (ISDs)

provider. Countries with robust protection of commercial competition
would need some other mechanism to select the ISD core operators.

• This model negates the advantages of isolation for transnational entities.
An entity with presence in multiple countries, such as a multinational
corporation, would need separate ASes in each ISD, and would need to
build a private network between its own ASes to prevent internal traffic
from crossing the inter-ISD links at the international level.

• It would require a significant transition in both routing topology and
governance structure from the present Internet, which would be hard to
achieve incrementally. With respect to routing, coordinated migrations
from one type of interconnection to another are virtually impossible to
implement at Internet scale, so both routing technologies would need
to coexist for an indefinite period of time. Any failure in international
coordination would lead to widely varying views of the SCION vs. non-
SCION Internet depending on which country’s ISD one is connected
to. With respect to governance, a relatively technically complicated
multilateral international treaty would need to be negotiated to set the
technical framework for international interconnection; this would take
time. Existing governance structures (e.g., ICANN and the RIR system)
would either need to evolve to derive their authority from international
treaties, or they would need to be dismantled and replaced with new
organizations under the new treaty arrangement.

3.5.3 The Isolation Service Provider (IsSP) Model

The models above assume that ISDs must provide core routing services and act
as trust anchors. Regarding routing services, however, this is not necessarily
the case, especially considering the fact that the current Internet topology is
increasingly dominated by peering links as opposed to the textbook model of
tiered transit [2]. We therefore consider a SCION Internet with “stripped-down”
ISDs that provide primarily trust root and infrastructure services for isolation
over networks operated by other entities.

In this model, the links within and between ISD cores primarily handle
control traffic. Almost all up-segments and down-segments will be joined
either by an AS below the core (which itself might be an existing tier-1 ISP),
by a peering link between ASes below the core, or by a peering link across
ISD boundaries (see Figure 3.2). The ISD core then provides low-bandwidth,
last-chance default routing for address pairs without an existing high-bandwidth
peering link between ASes in different ISDs.

There are two reasons to consider this model. First, the amount of trust
placed in ISDs by ASes within them makes the ISD a target for compromise.
The expense associated with an AS leaving an ISD in a model where the
ISD provides that AS’s sole connectivity to the Internet is high, as it may be

54

3.5 ISD Governance Models

ISD
core

ISD

ISD
core

ISD

Control Only

Peering Link

Control and Data

Figure 3.2: Example of the Isolation Service Provider (IsSP) Model.

associated with expensive-to-modify physical infrastructure. The trust the AS
places in the ISD is also great. This provides incentives both for malfeasance on
the part of the ISD — since it cannot realistically be punished for bad behavior
— as well as compromise of the ISD by an external entity. Separating an AS’s
Internet connectivity from its trust root moves the Internet to a model where
most top-tier ASes belong to multiple ISDs, and handle inter-ISD traffic through
“internal” peering links. This multi-membership (illustrated in Figure 3.3) allows
an AS to react to malfeasance, incompetence, or compromise of an ISD by
leaving the ISD without any penalty to its connectivity. This “big red button” is
an important tool in holding the ISD core accountable.

ISD ISD

Figure 3.3: Example of multi-membership in the IsSP Model.

55

3 Isolation Domains (ISDs)

This model also lowers the barrier to entry for new ISDs. If creating an
ISD requires an investment in communications infrastructure on a par with an
existing tier-1 ISP, growth in ISDs may be limited to existing large organizations.
By separating traffic carriage and trust provision, a new class of ISD, an isolation
service provider (IsSP), emerges. IsSPs could differentiate themselves based on
name service security, careful vetting of first-tier providers, effective quarantine
and isolation of maliciously registered names (see Section 6.5 on Page 116),
governance structures for inter-AS conflict resolution, and so on. Top-tier ISPs
would select a set of IsSPs to offer to their customers, and ASes could select
transit providers based in part on the properties of and services offered by these
IsSPs.

3.5.4 A Global Isolation Domain

Regardless of how ISDs are created, once we have a situation in which every
AS is routinely connected to multiple ISDs, it makes sense to create a default,
global isolation domain with relatively permissive policies. This ISD would be
roughly equivalent to the legacy Internet in a single ISD, but running SCION
protocols. This arrangement would allow other ISDs to operate arbitrarily
restrictive isolating policies with respect to other ISDs, while allowing ASes
that are also connected to the global ISD to maintain default connectivity.
Moreover, the global ISD would offer a view of the name hierarchy that is
similar to the current DNS namespace.

3.6 Nested Isolation Domains

ISDs provide control-plane isolation, path transparency, and the ability to
control paths. It is desirable to achieve these properties at a finer granularity
than that of global ISDs. For example, consider a conglomerate of banks that
desire stronger path control and transparency to ensure that packets will stay
within one bank’s network, or stay within the banking conglomerate’s networks.
Setting up several new ISDs would represent a high operational overhead.

Nested isolation domains (or nested ISDs) provide a lightweight mechanism
for hierarchical isolation domains in SCION. A single AS or multiple ASes can
decide to set up a nested ISD, and they can define how the routing infrastructure
of the enclosing (external) ISD interacts with the nested (internal) ISD. In
particular, the visibility and distribution of external PCBs within the internal
network can range from complete isolation (external PCBs are not sent inside
the internal ISD) to complete transparency (external PCBs are propagated inside
the internal ISD). Another interesting question is whether internal PCBs are
visible externally or not, allowing the nested ISD to achieve some level of
secrecy for its internal network structure. For the visibility of the internal ISD
structure, we propose three levels of transparency:

56

3.6 Nested Isolation Domains

• Transparent: All paths of a transparent internal ISD are announced to
the external ISD. All communication leaving the transparent internal ISD
contains the hop fields of the internal ISD.

• Translucent: A translucent internal ISD is visible, but its internal paths
are not publicly announced outside the internal ISD. The hop fields con-
tained in the packet header refer to the internal ISD, thus some topological
information about the internal ISD is leaked.

• Hidden: A hidden internal ISD is invisible to the outside. All communi-
cation leaving the hidden internal ISD has the internal hop fields removed
(similarly to the source address of devices behind a NAT device). The
structure of a hidden internal ISD, including ASes, paths, devices, and
certificates is thus not exposed externally.

Because the SCION data plane uses info fields to designate each path-segment
transition, each SCION packet header provides ISD-level path transparency.
Therefore, nested ISDs can help enforce interesting policies: a sender can
ensure that a packet cannot leave a corporation, or a firewall at the border of
a corporation can ensure that a packet will not leave a network defined by a
conglomerate of ASes. These properties are in stark contrast to today’s Internet,
where a destination IP address cannot provide strong properties for the scoped
propagation of a packet.

The details about nested ISDs will be specified in a future version of SCION.

57

Part II

SCION in Detail

ISD core

ISD core
ISD core

B

A

G

I

D
E

F

H

C

core-segment

up
-s

eg
m

en
t dow

n-segm
ent

ISD

ISD

ISD

59

4 Authentication Infrastructure

LAURENT CHUAT, ADRIAN PERRIG,
RAPHAEL M. REISCHUK, PAWEL SZALACHOWSKI

In this chapter, we discuss the authentication infrastructure of SCION, which
enables verification of identities and assertions that data did indeed originate
unchanged from the claimed entity. SCION offers built-in support for various
types of authentication and various uses, and thus provides several infrastruc-
tures to support authentication.

We start this chapter by providing an overview of the SCION authentication
infrastructure. We then present a public-key infrastructure (PKI) for the control
plane, and we describe the details of managing trust root configurations (TRCs),
which includes how TRCs are created, updated, and disseminated. Finally, we
explain how control-plane messages, names, and end entities are authenticated.

Chapter Contents

4.1 Overview . 61

4.2 Control-Plane Authentication 68

4.3 Name Authentication . 83

4.4 End-Entity Authentication . 86

4.1 Overview

As a foundation for authenticating messages, names, and entities, each ISD
core has a set of trust roots. Neighboring ISDs sign each other’s trust roots to
guarantee global verifiability of authentication information. To decrease the
number of trusted entities on long verification chains and thus increase secu-
rity, mutually trusting ISDs can additionally sign each other’s trust roots even
when they are not directly connected. In comparison to today’s authentication
infrastructures such as BGPsec’s RPKI [6] or TLS’s PKI, SCION offers the
following improvements in terms of security and flexibility:

61

4 Authentication Infrastructure

• Efficient updating of trust roots: Even after key loss, disclosure, or
compromise, trust roots can be rapidly updated, without software updates.

• Resistance to compromised entities and keys: Compromised or mali-
cious trust roots outside an ISD cannot affect operations that stay within
that ISD. Moreover, SCION’s authentication infrastructure can be con-
figured to withstand any single compromised key for certain critical
operations. In particular, in the case of end-entity certificates, higher lev-
els of security can be achieved and the system can be configured in such
a way that at least three independent trust roots need to be compromised
to forge a certificate.

• Decentralized trust model: Authentication relies on local trust roots.
This enables limiting the scope of authorities and preventing global kill
switches, as we describe in more detail in Section 13.8 on Page 325.

• Flexible trust policies and trust agility at several levels: Each ISD
can define its own trust policy. ASes need to accept the trust policy
of the ISD(s) they are in, but they can decide which ISDs they want
to join, and they can also participate in multiple ISDs. End entities
can decide which ISD they want to rely upon for resolving names and
verifying the association between names and public keys. They can
also define the set of trust roots they want to use for signing their entity
certificates, irrespective of which ISD they connect to (although if trust
roots of a remote ISD are desired, then the name will need to be selected
from a namespace for which the remote ISD is authoritative). This
flexibility enables fine-grained management of today’s heterogeneous
trust environments.

• Highly available authentication infrastructure for the control plane:
Authentication is possible without circular dependencies on the availabil-
ity of routing to verify a certificate’s revocation status, for example.

• Scalability: The authentication infrastructure scales to the size of a
global Internet and is adapted to the heterogeneity of today’s Internet
constituents.

• Transparency: A verifier always knows the exact set of entities that
need to be trusted for a given authentication operation, and knows that
any other entity cannot influence the operation.

• Algorithm agility: SCION offers algorithm agility by providing support
for multiple signatures, so that a new cryptographic algorithm can readily
be used in addition to the current algorithm.

To our knowledge, no previous system has achieved such a strong set of
properties. Although global authentication services without global trust have
been studied for decades, previous work still relied on a globally consistent
name hierarchy [35, 97].

62

4.1 Overview

4.1.1 Trust Root Configuration (TRC)

The foundation of the SCION authentication infrastructure is the trust root
configuration (TRC), which expresses the trust roots of each ISD. The TRC
defines the trust roots that are used for all authentication procedures in SCION,
thus all ASes, services, and end hosts need a TRC to use SCION. In short, a
TRC contains

• a version number, a creation timestamp, and an expiration timestamp;
• trust roots for SCION’s control-plane, name-resolution, and end-entity

PKIs;
• parameters specifying (a) the quorum of core ASes (from the local ISD)

required to sign a new TRC, (b) the quorum of CAs required to change
the end-entity PKI’s parameters and trust roots;

• signatures of core ASes to certify the authenticity of the TRC; and
• signatures of remote ISDs’ trust roots (at least one core AS, one CA,

and a name root key). All neighboring ISDs have to cross-sign, so that
each routing path has a corresponding chain of trust that can be followed.
Non-neighboring ISDs can sign TRCs as well (to create shortcuts in trust
paths).

See Section 16.1 for the complete list of items contained in a TRC.
We assume that all entities can initially obtain an authentic TRC, e.g., with

an offline mechanism such as a USB flash drive provided by the ISP, or with an
online mechanism that relies on a trust-on-first-use (TOFU) approach.

Dissemination of TRCs

Information about a TRC update is disseminated via SCION’s beaconing pro-
cess. Each PCB contains the version number of the currently active TRC, and
if the TRC version number of a received PCB is higher than the locally stored
TRC, a request is sent to the AS that sent the PCB to obtain the new TRC (see
details in Section 7.1). The new TRC is verified on the basis of the current one,
and is accepted if it contains at least the required quorum of correct signatures
by trust roots defined in the current TRC. This simple dissemination mechanism
has two major advantages: it is very efficient (as fresh PCBs rapidly reach all
ASes), and it avoids circular dependencies with regard to the verification of
PCBs and the beaconing process itself (as no server needs to be contacted over
unknown paths in order to fetch the updated TRC). The details of the TRC
dissemination process are described on Page 72.

63

4 Authentication Infrastructure

Revocation of Trust Roots

The TRC dissemination mechanism also enables rapid revocation of trust roots.
When a trust root is compromised, the other trust roots can remove it from
the TRC and disseminate a PCB with a new version number. The size of the
quorum needed to sign a new TRC must be larger than one to prevent any single
compromised root of trust from creating a new TRC.

TRC Verification

The TRC contains the roots of trust to verify all certificates and statements made
by an ISD. We now briefly describe several verification cases and give a detailed
list of verifications in the remainder of this chapter. To visualize the “flow of
trust” in the sequence of verifications, we draw diagrams as follows. Each circle
represents a cryptographic key that is used to certify another cryptographic
key, for instance by using a digital signature. The key (or set of keys) inside
the double circle is the root of trust that is axiomatically trusted to establish
trust in other keys. An arrow depicts the flow of certification, where the key
corresponding to the first node certifies the key corresponding to the node
pointed to by the arrow. Intuitively, the arrow indicates the “flow of trust” so
that when the first node is trusted, the second node pointed to by the arrow is
also trusted. We use this depiction to convey the intuition; later in the chapter
we use a more formal representation.

TRC
Ti

TRC
Ti+1

(a) Update

TRC
ISD 1

TRC
ISD 2

(b) Cross-signing

Figure 4.1: TRC verification mechanisms.

Figure 4.1a represents the creation of a new TRC with version Ti`1, which
is signed using (at least) the quorum of roots of trust defined in the TRC with
version Ti. Figure 4.1b shows the cross-signing of the TRCs of two ISDs.
SCION requires that every pair of connected ISDs also cross-sign each other’s
TRC. This is an important requirement as it guarantees that if a forwarding
path exists, then verifying a destination’s statement is always possible. For
instance, given a sequence of ISDs that need to be traversed from a source to
a destination, then the respective sequence of cross-signed TRCs enables the
source node to verify any statement made by the destination’s ISD.

The TRC is explained in more detail in Section 4.2.1 and the format is
specified in Section 16.1 on Page 369.

64

4.1 Overview

4.1.2 Public-Key Infrastructures in SCION

SCION offers the following three PKIs, which we briefly describe next:
• a control-plane PKI (details in Section 4.2),
• a name-resolution PKI (details in Section 4.3),
• an end-entity PKI (details in Section 4.4).

Why more than one PKI?

Ideally, SCION would use a single, highly secure public-key infrastruc-
ture. Unfortunately, the infrastructure we describe in Section 4.4 would
introduce a circular dependency if used in the control plane, and would
therefore not provide high availability guarantees.a To obtain intuition
on this point, consider “rebooting” the Internet: when routes are initially
established through routing updates, all information to verify these routing
updates must be available locally or obtainable from the entity that sent
the routing update.b Our end-entity PKI requires end entities, CAs, and
logs to be able to communicate; therefore, circular dependencies would
arise if such a PKI were used to authenticate the control-plane PKI, as the
verification of routing messages would rely on routing and vice versa. For
this reason, the control-plane PKI is based on trust roots that include the
core ASes so that no additional entities need to be contacted to issue AS
certificates or new TRCs.

aBobba et al. [37] previously described such circular dependencies in the context
of wireless networks. Their solution is to rely on self-certifying identifiers,
which unfortunately are not easily applicable in SCION because of the general
difficulty of updating or revoking self-certifying identifiers.

bThe current RPKI system of BGPsec has a circular dependency since query-
ing the revocation status of a certificate requires the reachability of RPKI
servers [59].

The control-plane PKI is a simple infrastructure that creates short-lived
certificates for the ASes of an ISD. The purpose of these AS certificates is to
enable the validation of signed beacons and path segments and to establish
secret keys with other ASes (e.g., through a Diffie-Hellman key exchange). As
described above, the root public keys are defined in the TRC of the respective
ISD. Each core AS operates one online and one offline key pair. (Potentially,
CAs could also participate under the condition that their servers be accessible
without introducing a circular dependency with beaconing.) The revocation of
root keys is accomplished through a TRC update operation. The revocation
of AS certificates, however, would introduce additional complexity because
each usage of an AS certificate would require a revocation check. We therefore
make use of short-lived certificates for ASes, with a lifetime on the order of a
few days. AS certificates are not directly signed with root keys contained in
TRCs; instead, root keys sign core AS certificates, which, in turn, are used to
authenticate the regular AS certificates that both core and non-core ASes use
for their daily operations.

65

4 Authentication Infrastructure

TRC Core
AS A

Beacon
T0

AS B

AS C

Beacon
T1

Beacon
T2

Propagation

Propagation

AS A

Figure 4.2: Authentication of beacon messages. Core AS A has both a core AS
certificate for issuing AS certificates, and a regular AS certificate
for signing PCBs.

Figure 4.2 depicts the chain of trust used for the verification of beacon
messages that are created by core AS A, forwarded to non-core AS B, and then
forwarded further to non-core AS C. The AS certificates are verified based
on the trust roots in the TRC, then the signatures in the beacon message are
verified based on those AS certificates.

AS certificates are also used for issuing certificates for the hosts inside the
ASes, for instance, by the OPT protocol (see Section 12.3).

The name-resolution PKI also has its trust roots embedded in the TRC.
Root keys are used to sign the root zone files of a DNSSEC-like infrastructure.
To achieve a higher level of security than DNSSEC, a domain’s name resolution
key is also signed with the end-entity certificate, as shown in Figure 4.3. In
standard DNSSEC, one has to trust all entities from the root to the leaf of the
name resolution tree: if any of those keys is under the control of an adversary,
then the final name resolution entry can be fabricated by the adversary. The
DNSSEC authentication still provides an initial authentication, but the strong
end-entity PKI validation will provide a high level of assurance that the domain
key is correct and in turn the final entry is correct.

The end-entity PKI is a high-security infrastructure used in SCION for
end-entity certificates, similarly to the TLS PKI used today for HTTPS. For this
PKI, we assume that the routing and forwarding infrastructures are operational.
Consequently, clients can contact additional services for the verification of a
certificate, for instance for the verification of its revocation status. The main
goal of this PKI is to achieve high robustness against compromised trust roots
and malicious CAs, which we achieve through three approaches: (a) use ISD-
scoped trust roots, such that a CA outside an ISD cannot create a fake certificate
for an entity inside the ISD, (b) record all certificate-related events in a publicly
verifiable append-only log, and (c) require multiple CAs and log servers to
sign each certificate. The left box in Figure 4.3 depicts the verification of an

66

4.1 Overview

TRC

CA 2

.

TLD

CA 1 LS

Domain
Policy

Name Resolution

End Entity

Domain
Key

Domain
Name Entry

Domain
Certificate

Figure 4.3: Authentication of an end-entity certificate and a name-resolution
entry.

end-entity certificate, which in this case relies on signatures by two distinct
CAs, and certificate registration by one log server (LS).

Through such a construction our PKI provides the following property for a
client-server communication: if the client has a TRC set as its trust root, an
adversary can spoof the server’s identity only if she is able to compromise a
threshold number of trusted entities (set in the TRC). In the case of a name
resolution pointing to another ISD, the client has to obtain a proof (asserted by
the threshold number of trusted entities) that the server’s domain does not have
a registered policy in the local ISD.

4.1.3 Catastrophe Prevention and Recovery

In case of catastrophic events, such as several private root keys being disclosed
due to a critical vulnerability in a cryptographic library, SCION is equipped
with a recovery procedure. The procedure consists in creating a new TRC with
fresh trustworthy keys (and potentially new algorithms), and re-sending the
TRC to all entities in the ISD and cross-signing entities.

No single malicious entity (e.g., AS, name trust root, CA, log server) can
take down the entire SCION network or impersonate an end entity, since critical
actions require signatures from multiple parties. Even in the event of several
entities forming a coalition to carry out an attack, the effects of that attack
would be limited to one or a few ISDs. Moreover, all actions are publicly
visible, which will deter participants from misbehaving.

67

4 Authentication Infrastructure

4.2 Control-Plane Authentication

The goal of the control-plane PKI is to enable the verification of control-plane
messages, even if the network is only partially available — and even in the
extreme case where the entire Internet is rebooted. To this end, the control-plane
PKI provides certificates that bind public keys to ASes, and handles all aspects
of the certificate life cycle (creation, revocation, update). The control-plane
PKI is operated by each ISD independently, so that no external ISD can affect
internal operations. The roots of trust are held by core ASes and by selected
CAs that are directly connected to a core AS or deploy their equipment with
their roots of trust within a core AS. The public root keys are embedded in the
TRC. The update and revocation of root keys occurs via signing a new TRC
with a quorum of root keys. The control-plane PKI also provides authentication
for path revocation messages (described in detail in Section 7.3) and SCION
Control Message Protocol (SCMP) messages (overview in Section 4.2.5 and
described in detail in Section 7.6).

4.2.1 Trust Root Configuration (TRC) Life Cycle

In this section, we describe the life cycle and management of trust root con-
figurations (TRCs), i.e., we illustrate how TRCs are created, updated, and
disseminated, and we show how consistency is enforced.

Creating a TRC

Initially, a TRC is created when an ISD is created and joins the SCION network.
Details on how a new ISD can join the network are provided in Chapter 5. In
short, the process of creating a new TRC is conducted as follows:

1. A new ISD sets trust anchors for the authentication of
a) control-plane messages (the root keys of core ASes),
b) names (the key of the name resolution root zone),
c) end entities (the keys of root CAs and log servers).

2. The ISD specifies all TRC parameters (see Section 16.1 on Page 369).
In particular, the ISD sets the value of the QuorumTRC parameter, which
defines how many of the current core ASes will need to sign the next
TRC. The ISD also sets the quorum required to change end-entity trust
roots (i.e., QuorumCAs). The version number of the first TRC is set to 0.

3. The TRC is first signed by at least a quorum of core ASes in the ISD
(with their online root keys), which is represented by the QuorumTRC

parameter. At this point, the TRC is operational within the local ISD.
4. To be accepted by external entities, the TRC is signed by trust roots of

other ISDs. Specifically, at least one core AS, one root CA, and a name

68

4.2 Control-Plane Authentication

trust root from a remote ISD sign the TRC. As chains of trust follow
networking paths every neighbor ISD has to sign the TRC. Non-neighbor
ISDs can sign the TRC as well, to create shortcut trust chains.

5. Similarly, to accept external TRCs, the ISD (i.e., at least one core AS,
one root CA, and the name trust root) signs the TRCs of its neighboring
(and optionally non-neighboring) ISDs after verifying the identities of
the ISDs. This and the previous steps can be combined, and may be part
of a cross-signing ceremony, where administrators physically meet each
other, or may be executed through out-of-band verifications.

The initial TRC should be delivered to all ASes and end hosts (by a trusted
software vendor or a local ISP, for example) via an authentic channel.

Updating a TRC

A TRC update can be conducted for recovery or operational reasons, such as
changes in an ISD core or key updates. Updating a TRC is similar to creating it.
The only difference is that the version number of the new TRC is the version
number of the current TRC plus one, and the new TRC must be signed by at
least a quorum of core ASes as specified in the current TRC.

TRCs are signed with online root keys. However, any change to the section of
the TRC related to core ASes (i.e., the list of AS keys and quorum parameters)
must be approved with offline keys. Such changes can happen in case of key
rollover, loss, or compromise, or in case of addition/removal of a core AS. To
do so, special requests called update tickets must be sent to a quorum of core
ASes who will sign the ticket (if they approve it) with their offline key. Once a
sufficient number of offline keys have signed them, the update ticket(s) must
be attached to the new version of the TRC, which will itself be signed with
online keys. Update tickets enable two properties to be efficiently achieved:
(a) simultaneous updates (e.g., of several root keys, to decrease the number of
TRC updates and thus to keep the overhead low), and (b) asynchronous updates
(obtaining all the required signatures might take some time; in the meantime,
other updates can be applied to the TRC). During the TRC verification pro-
cedure, if any ticket is attached to the TRC, one must check that the ticket
is signed by a sufficient number of legitimate entities and that the update is
compatible with the previous version of the TRC.

Parameters of naming and end-entity PKIs are governed by a naming trust
root and CAs, respectively. To update the parameters, again update tickets are
used. If CAs want to change their section in a TRC (e.g., by adding/removing a
CA or log server), an update ticket is sent to root CAs, and if QuorumCAs many
of them sign it, the ticket is passed to the core ASes that check the quorum and
sign the new TRC (with the proposed change). In the case of a change in the
name resolution section of the TRC, a ticket is created and signed by the name
trust root (as there is a single name trust root key, no quorum is required).

69

4 Authentication Infrastructure

If the new TRC is signed according to the quorum parameters of the previous
TRC, the new TRC is valid. However, to allow verification of remote messages
and entities, the new TRC has to be cross-signed with neighbor TRCs. Trust
roots (ASes, CAs, and name roots) use their online keys for cross-signing, and
the process of cross-signing updated TRCs can be automated in most cases. In
particular, provided trust anchors are unmodified or added, the new TRC can
be submitted to neighboring ISDs, which verify whether the TRC is signed in
accordance with the value of the current QuorumTRC parameter of the current
TRC. Note that in this case, trust roots of the new TRC do not have to sign
neighbors’ TRCs (as their keys remain unchanged). For instance, when an
ISD A updates its TRC from TRCA

i to TRCA
i`1 by adding a new AS, all neighbor

ISDs of A have to sign TRCA
i`1, but A does not need to sign their TRCs as the

previous signatures are still valid (no trust root of A was removed with the TRC
update).

However, TRC updates enable an ISD to remove trust anchors that were
involved in signing neighbor TRC(s). In such a case, the TRC update must be
combined with re-signing all TRCs that were signed by the removed anchor(s).
In both cases, the new TRC has to be signed by trust anchors of neighbor ISDs.
However, to automate that process, ASes, CAs, and name roots can implement
a default policy to sign a remote new TRC if the parameters they are interested
in are unchanged (e.g., for instance a CA can immediately sign the TRC if its
CAs remain unchanged). In extraordinary cases, remote ISDs can refuse the
cross-signing request and negotiate the TRC update process out of band.

After the new TRC is created and cross-signed, it is first loaded onto the core
certificate servers, which propagate the TRC among the beacon servers. New
TRCs are then disseminated via the beaconing process. The TRC update can
remove trust anchors used in routing, name, and end-entity validation; thus it
can create potential availability issues within the ISD. To maintain availability,
an old TRC can be used for a grace period as specified by the GracePeriod
parameter. Certificates issued within this period by a removed trust anchor are
still valid, but should be re-issued (see details on Page 74). Grace periods also
limit the time between TRC updates. Two consecutive TRC updates cannot be
conducted until the previous TRC grace period expires. For example, TRCi`2
cannot update TRCi`1 while TRCi can be used. This rule restricts the number
of TRCs that can simultaneously be used in the validation to two.

Quorum Size for TRC Update

The approach for the TRC update is designed to withstand one malicious core
AS. Although it is possible to extend the approach to tolerate multiple com-
promised core ASes, the system would need more complex operations, such
as consensus algorithms, which would impact availability. In the interest of
keeping our description simple and short, we defer more complex attacker mod-

70

4.2 Control-Plane Authentication

els to subsequent efforts. We emphasize that for the system we describe here,
even in the catastrophic case of a complete compromise of all cryptographic
keys, SCION provides insulation of all other ISDs and enables a new TRC to be
bootstrapped. As long as only a single core AS is compromised, integrity and
consistency of the sequence of TRC updates is not affected. Since we assume
that core ASes are going to be a relatively small number of entities maintaining
active business relationships with each other, misbehavior against each other
is expected to be rare and can be handled through an out-of-band mechanism.
In particular, if a core AS misbehaves, another core AS can collect evidence,
convince other core ASes of the misbehavior, and exclude the malicious AS
from the ISD core. For these reasons, we assume that core ASes extend a
certain level of trust toward each other. Despite being competing entities, core
ASes benefit from cooperation to keep the network operational. Moreover, the
control-plane PKI operations are accountable as all operations are signed, so
that misbehavior will lead to a trail of evidence that can be used in remediation.
It is reasonable to assume that a certain degree of mutual trust can exist in
a small group of entities that are cooperating in an economic environment.
However, we stress that SCION does not require strict consensus as required
in the current Internet. Due to the introduction of isolation domains with local
TRCs, core ASes that disagree on fundamental parts of their TRC (such as root
CAs) can form their own ISD.

We now discuss how to pick the quorum size, i.e., the number of entities
needed to perform certain operations. Let G represent the number of legitimate
“good” core ASes, B the number of malicious “bad” core ASes we want to be
able to tolerate, and U the number of unavailable good core ASes we want to
be able to tolerate. Then we obtain the following formulas for the quorum size:
QS“ G´U , QSě PG`1

2

T`B, and
PG`1

2

Tą B. The rationale is as follows. If
not all good ASes participate, the quorum size needs to be smaller than the
total number of good ASes. In the case of simultaneous quorums [148], to
ensure that there is at least one good node that participates in all quorums, we
need to have at least

PG`1
2

T

good nodes per quorum. In the worst case, all
bad ASes always participate in each quorum, thus the quorum size is at least
the number of required good ASes plus the number of bad ASes. The third
inequality ensures that, when taking the majority of responders, the bad ASes
cannot outnumber the good ones.

Consequently, to tolerate one malicious AS and one unavailable good AS,
we would need at least six core ASes with G“ 5, B“ 1, U “ 1, and QS “ 4,
so even if the bad AS refuses to participate, we can ensure that progress can
be made. With fewer than six core ASes, we cannot tolerate a malicious core
AS and one unavailable good core AS. Assuming that all good core ASes are
available, a satisfactory assignment is G“ 3, B“ 1, U “ 0, and QS“ 3.

71

4 Authentication Infrastructure

Disseminating TRCs

We assume that all entities within an ISD are pre-loaded with a recent TRC.
Moreover, on startup, all servers and end hosts obtain all missing TRCs (from
the TRC they possess to the most recent TRC) of their own ISD from a local
certificate server. However, we impose a restriction on this catching-up opera-
tion: it can only start from a TRC that is at most 1 year old. Then, the TRCs are
validated (i.e., to verify whether subsequent TRCs respect their update policies),
and the most recent TRC is employed for all subsequent operations. There are
two main requirements for the dissemination of TRCs: (a) efficiency, a new
TRC must be rapidly disseminated (to all other parties that need it); and (b)
avoiding circular dependencies, an unverified path should not be used to fetch
a TRC. The first requirement is met by tying TRC dissemination to the bea-
coning, path registration, and path lookup processes. The second requirement
is achieved by applying the following rule: a party that sends a signed object
(beacon, path segment, name resolution entry, or end-entity certificate) must
have the complete trust information (i.e., TRCs and certificates) required to
successfully verify it.

More precisely, TRCs are disseminated via SCION’s beaconing process and
verified based on the current or the previous TRC. While beaconing, each AS
adds to the beacon the version number of the TRC it is currently using. A
beacon server receiving a new beacon checks the version number contained in
the beacon against its locally stored TRC. If the TRC version number within
the received beacon is higher than the locally stored TRC, the beacon server
sends a request to the beacon server that sent the beacon to request the new
TRC. Similarly, the sender can be asked for the missing TRCs of remote ISDs,
as they are required to verify beacons. The sender returns the new TRC, which
is then verified by the receiving beacon server. The conditions under which the
new TRC is accepted depend on the ISD that updated it. If the local ISD has
updated the TRC, then the new TRC is accepted if

1. it contains at least the required quorum number (i.e., QuorumTRC) of
correct signatures of trust roots defined in the current TRC, and

2. the receiving AS’s certificate is valid against the new TRC.
As a beacon server has previous TRCs from its ISD, it is able to verify their
consistency. If the last condition is not met, the AS postpones the TRC accep-
tance until its own certificate is re-issued and valid against the new TRC. In
such a case, the AS continues beaconing using its current TRC and certificate,
meanwhile contacting its core to obtain a new certificate. Note that other ASes
will learn about the new TRC, as the version is in the beacon (at least in the first
AS entry, i.e., the AS entry of the core AS that initiated the beaconing).

In the case of a new TRC from a remote ISD, the update is accepted if
1. it contains at least the required quorum number (i.e., QuorumTRC) of

correct signatures of trust roots defined in the previous TRC; and

72

4.2 Control-Plane Authentication

2. there exists a chain of trust from (a) the local TRC to the new TRC, and
(b) from the new TRC to the local TRC.

Note that TRC cross-signing follows the physical network connections, thus
the latter condition is satisfied when all subsequent TRCs in the core beacon
are cross-signed.

After the new TRC is accepted, it is submitted by the beacon server to a local
certificate server. Finally, the TRC is re-distributed internally. To this end the
beacon server replicates the TRC among all beacon servers within its AS, and
similarly the certificate server replicates the TRC among all local certificate
servers.

Path servers discover new TRCs via path-segment registration messages (see
Sections 7.1 and 4.2.3). This occurs when the beacon server registers path
segments (authenticated with the new TRC) with its local path server and a
core path server. The path servers check the version of the TRC with which the
segments were authenticated. If a new TRC is detected, the path servers query
the beacon server for this TRC. After the new TRC is returned, the TRC and
path segments are validated accordingly, and after a successful validation the
TRC and path segments are saved.

Similarly, end hosts learn about new TRCs through the path lookup process
(see Sections 7.2 and 4.2.3). End hosts, at the end of the process, obtain a set of
path segments that can be combined into a forwarding path to the destination.
For a path segment authenticated with an unknown TRC, this TRC is requested
from the local path server, which has returned the path segments. The path
server is obliged to possess all TRCs needed to verify every path in the set.

An example of TRC dissemination is presented below in Section 4.2.4.

TRC Update Frequency

Revocation of root keys happens through TRC updates. The update frequency
of the TRC should be very low, for the following reasons:

• Each update requires a TRC dissemination to all entities that intend to
communicate with a host inside that ISD.

• If a host was offline for a while and has an old TRC, it needs to fetch all
intermediate TRCs to verify the current one.

• By making the TRC update a rare operation, we can make minimal use
of the TRC signing keys and shield them from regular operations, which
enhances security.

We thus aim for a TRC update that occurs at most on a weekly basis, ideally on
a monthly or longer frequency. However, TRCs have to be updated before they
expire (expiration timestamps are set by ISDs themselves).

73

4 Authentication Infrastructure

TRC Lifetime

TRC updates can create inconsistencies in chains of trust. For instance,
• a beacon server receives a beacon where ASes use different TRC versions

for authentication,
• an end host fetches up-segments and down-segments authenticated using

TRCs with different version numbers,
• an end host possessing a new TRC obtains a name resolution response

authenticated with an old TRC.
To achieve high availability, such inconsistencies have to be handled without

breaking validation. To this end, an ISD can define a grace period (during
which a previous TRC can still be used). This period is defined in the TRC with
the GracePeriod field. Then, TRCi is valid effectively until

TRCi`1.CreationTime`TRCi.GracePeriod . (4.1)

4.2.2 AS Keys and Certificates

To achieve a high level of security for the control-plane PKI operation, we
propose that core ASes have online and offline asymmetric key pairs. In this
design, offline keys are used for infrequent safety-critical operations that will
require administrator involvement to cross an air gap, and online keys are used
for frequent automated operations that do not require administrator involvement.

The renewal of AS certificates is an example of a fully automated operation
that occurs every few days and only requires online keys. For the addition
or removal of a core AS, offline keys are required to ensure human operator
involvement and that even a complete compromise of all online keys does not
permit sensitive changes to the TRC. So even for an event such as the Heartbleed
vulnerability [75], which may simultaneously compromise all online keys, the
basic infrastructure (i.e., the control-plane PKI) remains safe and all online keys
can efficiently be updated to fresh keys after the vulnerability has been patched.

The revocation of AS certificates is challenging. As AS certificates are
involved in the availability-critical operation of beacon dissemination and
beacon validation, checking the revocation status of an AS certificate would
result in a deadlock. Consider a revocation service operated by the ISD core,
which keeps a list of revoked AS certificates. When verifying an upstream AS’s
signature contained in a beacon, a downstream AS would need to contact the
revocation service to ensure that the certificate is still valid. In the case of a
network reboot, however, an AS has no paths yet to the core and thus cannot
validate the first beacon message it receives. If one used an unverified path to
reach the revocation service, then the system would not operate safely in the
initial phase. We propose a more elegant approach: short-lived certificates,

74

4.2 Control-Plane Authentication

which do not need any revocation if we can tolerate a short period of continued
validity when a certificate is compromised [212].

Table 4.1 gives an overview of the different keys and certificates used in the
control-plane PKI. The TRC contains the offline and online keys of all core
ASes and is signed with a quorum of root keys (online or offline, depending on
the context); as such, it can be considered to be a self-signed root certificate,
except that multiple parties are involved. Online and offline root keys are
included in TRCs while other keys are authenticated via certificates. All ASes
(including the core ASes) use short-lived AS certificates to carry out their
regular operations (such as signing beacons and path segments). Core ASes
hold an additional certificate whose only purpose is to authenticate (other ASes’
and their own) AS certificates.

Name Notation Auth.1 Validity2 Usage

Offline Ki,offline TRC 5 years Critical TRC update:
root key - Addition/removal of core ASes

- AS quorum parameter change
- Update of root keys

Online Ki,online TRC 1 year Signing core AS certificates
root key TRC creation, non-critical update

Cross-signing

Core AS Ki,core Ci,core 6 months Signing AS certificates
key

AS key Ki Ci 3 months Beacon authentication
Path-segment authentication
DRKey (used within SCMP)

(a) Private Keys

Name Notation Signed by Associated Key Validity

Core AS certificate Ci,core Ki,online Ki,core 1 week

AS certificate Ci Ki,core Ki 3 days

(b) Certificates

Table 4.1: Summary of keys and certificates used in the control-plane PKI.

The TRC and certificate lifetimes are selected in such a way that frequently
used online keys that are more exposed to potential compromise are rolled more
frequently than infrequently used offline keys. The root key pairs of an AS
must be updated regularly through TRC updates. To ensure that key update is a

1Location of the corresponding (authenticated) public key.
2Recommended usage period before key update (best practice).

75

4 Authentication Infrastructure

periodically practiced function (for good security hygiene), all keys are updated
at least every few years. Also, we suggest a validity period of three days for
regular AS certificates and one week for core AS certificates. (Please note that
the key validity period indicates the key lifetime, whereas the certificate validity
period indicates how often the certificate needs to be re-signed.)

When an AS joins an ISD, it obtains from the ISD core:
1. a unique and permanent AS identifier (within the ISD),
2. a certificate for the AS’s public key.

The AS certificate is issued by a core AS, which is obliged to check the identity
of the AS. AS certificates are short-lived, by default valid for 3 days, although
each ISD can set different policies on the certificate lifetime. This design de-
cision is motivated by simplicity and availability requirements, as short-lived
certificates can be validated without any additional information (such as certifi-
cate revocation status information) and no revocation system is required [212].

On the other hand, a consequence of short-lived certificates is a need for
frequent re-issuing of certificates before they expire. This process is automated
in SCION. An AS that needs to re-issue its certificate contacts the core AS that
issued it before, with a re-issuance request. The re-issuance request proves that
the requesting AS still possesses the private key that corresponds to the public
key included in the current certificate. The core AS verifies the request, copies
the fields of the current certificate, sets a new lifetime for the new certificate,
and signs it.

Only the core AS that issued a certificate can re-issue it. With such an
approach, every core AS keeps a one-to-one mapping between ASes and their
current public keys (that were certified by this core AS). The re-issuance
requests are introduced to prove that this mapping is still valid. However, in
the case of key loss or key compromise, an affected AS has to contact the
corresponding core AS to change its mapping as the old public key should no
longer be used. The AS generates a new key pair and contacts the core AS
(out of band). The core AS checks the identity of the AS, and subsequently
issues a new certificate (with the new public key), and changes the mapping
so that old certificates cannot be re-issued anymore. We emphasize that short-
lived certificates are irrevocable during their lifetime; thus if a private key
is compromised, the adversary can use the corresponding certificate until it
expires.

Although core ASes have core AS certificates, these are only used for issuing
other certificates. To separate certificate and key usage, control-plane operations
(such as beacon and path-segment signing) are performed by core ASes with
AS keys and corresponding AS certificates. To this end, a core AS periodically
creates its own AS certificate and signs it with its core AS key. The format of
AS certificates is presented in Section 16.2 on Page 370.

76

4.2 Control-Plane Authentication

A TRC update may invalidate an AS certificate, e.g., when a certificate-
issuing core AS has been removed from the TRC. In such a case, the affected
AS can still use its certificate in combination with an old TRC. However, this
is possible only during a grace period as described above, and thereafter, the
AS has to obtain a new certificate from one of the current core ASes. In case
of large-scale compromise, the core AS can revoke its online root key that was
used to sign the core AS key that signed the AS key. Revocation of the online
root key through a TRC update would thus invalidate all the underlying AS
keys.

4.2.3 Control-Plane Authentication

PCBs and path segments are authenticated with AS certificates. We now
describe these operations in more detail.

Beacon Authentication

The authentication of PCBs is especially important as PCBs are used in building
path segments. The details of PCB creation and the PCB format are described
in Section 7.1.1 on Page 120 and Section 15.3 on Page 356.

The beaconing process is initiated by a core beacon server, which creates
a PCB, appends its AS entry, and signs the PCB with a private key that cor-
responds to an AS certificate that can be validated based on the current TRC.
Certificate and TRC versions are included within the AS entry; thus they are
signed as well. Then, the PCB is sent to a beacon server of a neighboring AS.
The receiving beacon server first checks whether it has the TRC and certificate
with the versions announced in the PCB. If the TRC is new, then the beacon
server updates it. If the certificate version is unknown to the receiving bea-
con server, the sending beacon server is queried, and the correct certificate is
returned. (New certificates are replicated across the AS’s certificate servers.)
At this point, the receiving beacon server has all the information necessary to
verify the PCB. It verifies the certificate based on the TRC, and finally verifies
the PCB’s signature based on the certificate.

The receiving beacon server continues the beaconing process by appending
its own AS entry. As before, the beacon server states versions of the used TRC
and certificate. Finally, the beacon is signed and sent to neighboring ASes. The
next receiving beacon server checks the versions of all TRCs and certificates
involved in the beacon authentication. If any TRC or certificate is missing,
the sender is queried. With such a beaconing design, the relevant TRCs and
certificates are disseminated step by step with the beacon dissemination. The
beacon server continues the validation (and beaconing) after all necessary TRCs
and certificates are provided. Namely, it verifies the signature of each AS entry
individually. The beacon continues to propagate until it reaches a leaf AS‹.

77

4 Authentication Infrastructure

Path-Segment Authentication

Beacon servers turn PCBs into path segments in every registration period (see
details in Section 7.1 on Page 119). Path segments have the same format as
PCBs, except they may be without some optional metadata. Each AS entry
within a path segment is signed, and it contains information about the TRC and
certificate used to protect the entry.

When a beacon server registers path segment(s) with a path server (local
and/or core), the path server(s) can query the beacon server for the TRC(s) or
the certificate(s) (if any are missing). Path servers accept path segments if their
authenticity is verified, i.e., if

1. the required TRC(s) and certificate(s) are provided,
2. if there is a new TRC, it is consistent with the previous one,
3. the certificate(s) are valid with respect to the corresponding TRCs,
4. the path segment’s signatures are valid with respect to the certificates.

Note that through such a registration process, path servers learn new TRCs and
certificates.

The way in which end hosts verify path segments is similar to the way path
servers do so. An end host sends a path request to its local path server, which
then resolves the request recursively (see details in Section 7.2 on Page 132).
For the path segments obtained from the local path server, the end host conducts
the verification. Hence, it first asks for all missing TRCs and certificates used in
the authentication of any path segment. Then, it verifies each path segment as
described above. Similarly, in this way, the end host learns new TRCs, which
finally replace the old ones.

Besides path registration, SCION allows for removal of path segments from
the path servers and end hosts that cache them. The path revocation mechanism
is described in Section 7.3 on Page 138.

4.2.4 Authentication Examples

Intra-ISD Beaconing

An example of intra-ISD beacon authentication is presented in Figure 4.4. Core
ASes update the TRC from TRCi´1 to TRCi, after AS F has been removed from
the core. The figure shows how this update is disseminated across the ISD using
a single beacon.

First, core AS D initiates the beaconing process, by creating a fresh PCB with
D’s entry. The entry includes the version number of the new TRC (i.e., i) and
the version number of D’s certificate. The entry is signed with D’s AS private
key, and the corresponding public key is included within D’s certificate CD,
which in turn can be validated based on TRCi. When AS C receives the PCB,
it learns that there is a new TRC. C asks D for TRCi (and for D’s certificate if

78

4.2 Control-Plane Authentication

ISD core

D’s block
C’s block

PCB

ISD

D’s block
PCB

D’s block
C’s block

PCB

B’s block

D’s block
C’s block

PCB

B’s block
A’s block

E FD E FD

B

AC

F

A

C

B

ED

TRC i-1 TRC i

Figure 4.4: Example of intra-ISD beacon authentication.

it is missing), and then verifies whether the TRC update was correct. Further,
C verifies the signature over the PCB using D’s public key contained in D’s
certificate, and validates this certificate with the new TRC. The PCB is accepted,
and the new TRC is propagated among C’s PCB and certificate servers. Finally,
AS C appends its own entry to the PCB, and signs it. C’s certificate is issued
by D, which is in the new TRC, so C uses i as the TRC version number for its
entry.

Then, the PCB is sent to AS B, which verifies the new TRC (obtained from
C), and the first entry in the same way as C. Then B verifies the next (i.e., C’s)
entry, which is signed with C’s key, and which can be successfully validated
based on the new i-th TRC. Finally, B creates its own entry; however this entry
cannot be marked with TRCi’s version number because B’s certificate is signed
by AS F , which was removed from the core by the TRC update. In such a
case, B is forced to temporarily use TRCi´1 (this is possible during a grace
period — see Page 74) for the propagation, and contacts an active core AS to
obtain a new certificate. Although AS B cannot sign objects (e.g., PCBs or
path segments) with the new TRCi, it replicates this TRC among its PCB and
certificate infrastructure.

Finally, AS A receives the PCB, and although the latest AS entry is signed
based on TRCi´1, A learns about the new TRC from the previous entries. AS A
verifies and updates the TRC similarly to how the previous ASes did.

Path servers learn the new TRCs from the path registrations and lookups,
which are conducted on demand. For instance, if A’s beacon server registers a

79

4 Authentication Infrastructure

ISD core

ISD core
ISD core

A D

B C

TRC i-1

TRCTRC

TRC i

D

B
C

A
A’s block
B’s block
C’s block
D’s block

PCB

A’s block
B’s block
C’s block

PCB

A’s block
B’s block

PCB
A’s block
PCB

ISD 1
ISD 2

ISD 3

Figure 4.5: Example of core beacon authentication.

path segment that was built upon the new TRC, a receiving path server asks the
beacon server to send this new TRC. However, after path servers learn about
new TRCs, they still accept (during a grace period) registrations signed on the
basis of an old TRC.

Inter-ISD Beaconing

An example of inter-ISD beacon authentication is presented in Figure 4.5,
where a core PCB is disseminated from AS A towards AS D. In our scenario an
intermediate ISD contains two core ASes (i.e., B and C) that have TRCs with
different versions (such a situation can happen for example due to dissemination
delays within an ISD core).

First, a beacon server in AS A initiates beaconing by creating the first AS
entry. The entry is signed with A’s AS private key, and the corresponding public
key is included within A’s AS certificate, which in turn can be validated with
the TRC of ISD 1 (denoted TRC1). A sends the PCB to AS B, which is in
another ISD. AS B uses TRC2

i´1 and verifies the PCB. If TRC1 or A’s certificate
is missing, B’s beacon server asks A to provide that. AS B verifies A’s entry
based on TRC1, and verifies whether TRC1 is cross-signed by TRC2

i´1, which is
currently used by AS B. Then, B creates and signs a PCB including its entry
and disseminates the PCB to AS C. AS C verifies the PCB, validating A’s and
B’s entries. As B used an old TRC, C checks whether the grace period is not
violated. C also verifies whether TRC1 is cross-signed with TRC2

i , which is
currently used by AS C. Next, C appends its entry and signs the PCB with its
own AS key, which can be verified based on TRC2

i . Then, the PCB is forwarded
to ISD 3. AS D receives the PCB and obtains all missing (if any) TRCs and

80

4.2 Control-Plane Authentication

ISD core

TRC

ISD core
ISD core

B

A

G

I

TRC

D
E

F

H

C

core-segment
up

-s
eg

m
en

t dow
n-segm

ent

ISD 1

ISD 2

ISD 3

up-segment core-segment

B

C

TRC

G

H

down-segment

A

D E F

I

Figure 4.6: Example of path-segment authentication.

certificates from the sender (i.e., AS C). As ISD 1 is not a neighbor of ISD 3,
D must verify that there is a chain of trust from TRC3 to TRC1. To this end, D
verifies cross-signatures between TRC3 and TRC2

i , TRC3 and TRC2
i´1, TRC2

i´1
and TRC1. Additionally, D verifies that the update from TRC2

i´1 to TRC2
i was

consistent.

Path-Segment Authentication

An example scenario of path-segment authentication is presented in Figure 4.6.
The topology consists of three ISDs, where an end host from AS A wishes to
connect to an end host from AS I.

The first step is the beaconing process. In our example, the following path
segments are created:

• an up-segment between source AS A and core AS C,
• a core-segment between core AS C and core AS G, and
• a down-segment between core AS G and destination AS I.

AS C starts beaconing by sending a new PCB, which eventually is received
by A’s beacon server (an example of this process is presented on Page 78). AS A
receives and verifies the PCB, and converts the PCB into an up-segment. To this
end, the AS creates its own AS-level information, appends it, and finally signs
it (using the current TRC and A’s certificate). This path segment is registered

81

4 Authentication Infrastructure

with a local path server as an up-segment. During the registration, the path
server verifies the up-segment. If a TRC or certificate is missing, the path server
requests it from the beacon server. (Note that new TRCs and certificates are
disseminated during the beaconing process.) After a successful verification, the
path segment from A to C is saved. The beacon server also registers this path
segment (as a down-segment) with a core path server (e.g., in AS C).

Similarly, AS I creates and registers the up- and down-segments between
ASes G and I (the up-segment is registered at the local path server and the down-
segment at the core path server). The TRC(s) and certificate(s) are disseminated
(if needed) accordingly.

The core-segment is created in a slightly different way. A core PCB, dissemi-
nated from G to C, is validated by C’s beacon server. To validate it, the beacon
server needs to have TRCs of ISD 2 and ISD 3. To create a core-segment, C
appends to the PCB its own AS-level information, and then signs the PCB.
Finally, the core-segment is registered with a local path server (i.e., path server
of C), which will request any missing TRC(s) or certificate(s).

After paths are created and registered, end hosts can successfully conduct
path lookups. In our example, an end host from AS A asks its local path server
for a path to AS I. The path server does not have such a path segment cached,
so a core path server in AS C is contacted. The core path server likewise does
not have the path segment, hence the core of I’s ISD is queried. The core path
server of AS G returns the G–I down-segment (which was registered by I’s
beacon server) to the core path server in C. C’s path server can query I’s path
server for TRCs and certificates used to authenticate the G–I down-segment
(e.g., TRC3 or I’s certificate can be queried if C’s path server does not already
have it). The down-segment is then verified, and returned to A’s path server.
Along with this down-segment, a core-segment (C–G) is added. A’s path server
tries to validate the returned path segments. To this end, the TRCs TRC2 and
TRC3, and all certificates involved in path segment authentication are needed.
More specifically, TRC2 is required to establish a chain of trust between TRC1

and TRC3 (note that TRC2 cross-signs these TRCs). At the end of the lookup
process, A’s path server returns the core-segment and down-segment to the end
host, accompanied with the A–C up-segment. Finally, the end host obtains the
path segments (and asks for missing TRCs or certificates), and verifies all paths
and trust chains between TRCs.

4.2.5 SCION Control Message Protocol (SCMP)

Security of a control message protocol is essential for the security of higher-level
protocols. For instance, the Internet Control Message Protocol (ICMP) does not
provide any form of authentication. Consequently, the Internet transport proto-
cols (such as TCP) suffer from attacks caused by maliciously generated ICMP
packets [99]. However, providing security for control protocols is particularly

82

4.3 Name Authentication

challenging, as control packets are often created and processed by routers; thus
the authentication and verification process has to be highly efficient.

TRC

AS B

AS A KAB
DRKey

Figure 4.7: Verification of an SCMP message authenticated via MAC.

SCION provides a framework for authenticating SCMP packets, and two
distinct authentication schemes are available. The first scheme is symmetric and
based on the DRKey protocol (see Section 12.5 on Page 291). In this scheme,
SCMP packets are protected by their sources and verified by their destinations.
A symmetric key used to authenticate SCMP packets is derived from a secret
symmetric key local to the AS, and is exchanged securely using AS certificates,
as illustrated in Figure 4.7. In the second scheme, SCMP packets are signed in
batches by border routers, and receiving end hosts verify signatures by using
the corresponding AS certificates. More details on the authentication of SCMP
are provided in Section 7.6.3 on Page 156.

4.3 Name Authentication

The goal of the name authentication infrastructure is to authenticate bindings
between SCION addresses and human-readable names. To this end, name
resolution responses have to be authenticated — for which SCION relies on
a DNSSEC-like infrastructure. However, to achieve a higher level of security
than DNSSEC, the validity of name resolution keys is additionally asserted by
end-entity certificates.

4.3.1 Name-Resolution Key Infrastructure

SCION defines its own name resolution protocol, called RAINS, which is
described in Chapter 6. RAINS provides an authentication infrastructure that
is similar to DNSSEC [13], with one main difference that is important for
authentication purposes. Assertions about names in RAINS are explicitly
bound to an assertion context (see Section 6.3.3 on Page 109), which defines
the chain of signatures used to verify the validity of a given assertion. Each ISD
has its own native isolation context, at which signature chains for names looked
up from within that ISD are rooted. This is analogous to the current DNSSEC
tree with one root per ISD (instead of a single global root).

83

4 Authentication Infrastructure

The root keys for each ISD’s native isolation context are included and dis-
tributed with TRCs, as opposed to software updates in DNSSEC. Through the
TRC cross-signing framework (see Section 4.2.1) clients can resolve names in
other (than native) isolation contexts. RAINS assertions are natively signed
(replacing DNSSEC’s RRSIG resource record type), and delegation occurs via
a digital signature, as opposed to via name-server redirection. For the sake
of simplicity, we leave further details aside for now and refer the reader to
Chapter 6.

Within a native isolation context, the chain of trust is tied to the domain
namespace hierarchy. For instance, a domain ‘ethz.ch.’, which wishes to
sign its name resolution records, first has to obtain a signature for its key from
its parent in the namespace hierarchy, i.e., from the ‘ch.’ domain. Similarly,
ch. has to have its key signed with the root key (i.e., by the root domain ‘.’).
Figure 6.3 on Page 110 shows such chains for various assertion contexts. The
name resolution root key is contained in the TRC.

Key updates in RAINS are similar to those in DNSSEC, i.e., every change
of a domain’s name resolution key affects the superordinate and subordinate
domains according to the namespace hierarchy of the domain. Namely, the
domain’s parent has to sign the domain’s new key, and then the domain has
to re-sign the keys of each child. RAINS allows multiple keys to be valid for
delegation to a zone at once; operational practices for overlapping validity can
reduce the potential for disruption of verification during a key rollover.

To improve security of the standard DNSSEC trust model, we supplement
RAINS authentication with our highly secure end-entity PKI. More specifically,
domain public keys are additionally asserted by a special end-entity certificate.
We call this special certificate a subject certificate policy (SCP); its details
are presented below in Section 4.4.3. SCPs are certificates issued by multiple
trusted parties (namely, certification authorities — CAs) and used by domains
to govern their public-key certificates and secure connections. There is a unique
active SCP per domain, and SCPs are published as RAINS assertions.1 The
domain asserts its own name resolution key by signing this key with its SCP’s
private key and publishing this signature within its name resolution zone. The
public key of this certificate is also published as a RAINS assertion for cross-
verification.

4.3.2 Validation of Name Resolution Entries

As part of a successful name lookup, the obtained assertions are validated as
follows: (a) The signature chain is validated according to the assertion context
for the entry; by default, for globally significant names, this chain is rooted at
the current TRC (i.e., the TRC trusted by the user). (b) Once the assertion is

1SCPs are accompanied by proofs from the end-entity PKI that they are logged and fresh. If a
domain does not have an SCP, the domain publishes an assertion with an absence proof.

84

4.3 Name Authentication

validated, the last step is to verify the domain’s SCP and the additional signature
over the domain’s name resolution key. (c) The client verifies whether the SCP
belongs to the correct domain and whether it is correct (i.e., signed by the
required number of trusted CAs and asserted by a trusted log — more on SCP
validation can be found in Section 4.4.3). (d) The SCP is validated according to
the TRC trusted by the user. (e) Finally, the client verifies whether the domain’s
name resolution key is signed with the SCP’s key. This is the last check which
ensures that name resolution responses are authentic. As the SCP is used in
TLS connections, it can be stored by the client, so the client does not have to
fetch it again over the potential TLS connection with the domain. In the case
when the domain does not have an SCP, the domain asserts in RAINS a proof
that claims that there is no SCP registered for this domain.

Note that, as in the previous cases, inconsistencies may occur while TRCs
are updated. For instance, a client can have a new TRC while some name
resolution entries (signed with an old one) are cached locally. However, the
inconsistencies influence the entry validation only when the new TRC changes
the root name resolution key. In such a case, the validation can be conducted
using an old TRC as long as it is compliant with the specified grace period (see
Equation 4.1 on Page 74).

Example. Consider an address lookup for the following name:

‘simplon.inf.ethz.ch’

Assume the name is iteratively resolved, within the native isolation context,
by a query server without any existing state. The query server performs the
following steps:

1. Retrieve valid public keys for the naming root in the native isolation
context from the TRC, and cache them for the limit of their validity.

2. Issue a query for the delegation key for the name ‘ch.’ in the native
isolation context using an intermediary server storing root assertions
discovered through service anycast (see Section 7.5 on Page 153).

3. Verify the signatures on the resulting assertions against the root public
keys in the TRC, and cache the delegation keys for ‘ch.’ for the limit
of their validity.

4. Issue a query for the delegation for the name ‘ethz.ch.’ in the native
isolation context.

5. Verify the signatures on the resulting assertions against the stored keys
for the ‘ch.’ zone, and cache the delegation keys for ‘ethz.ch.’ for
the limit of their validity.

6. Issue a query for the delegation for the name ‘inf.ethz.ch.’ in the
native isolation context.

85

4 Authentication Infrastructure

7. Verify the signatures on the resulting assertions against the stored keys for
the ‘ethz.ch.’ zone, and cache the delegation keys for ‘inf.ethz.ch.’
for the limit of their validity.

8. Issue a query for addresses for ‘simplon.inf.ethz.ch.’ in the native
isolation context.

9. Verify the signatures on the resulting assertions against the stored keys
for ‘inf.ethz.ch.’

10. Additionally verify the signatures on the resulting assertions against the
SCP key for ‘inf.ethz.ch.’, if available.

Note that while the iterative verification of the delegation chain requires each
of the public keys to be available and the signatures thereon verified, all of the
queries can be issued in parallel.

4.3.3 Name Consistency

Each ISD maintains its own root zone for name resolution. This root zone
contains delegations to the authority for each TLD. Each TLD authority then
serves and authenticates assertions about second-level names, and so on. In the
typical case, for a given TLD, each ISD will delegate to the same authority, and
the chain of signatures will be identical beyond the ISD root signature of the
TLD authority. There are two important deviations from the typical case:

• Isolated TLD: An ISD may delegate authority for a TLD otherwise not
present in the root zone, creating a TLD that is available only in that
ISD. Care must be taken with isolated TLDs, since they may lead to
conflicts between ISDs, which can only be resolved through nontechnical
processes (see Section 3.5 on Page 51).

• Isolated subordinate TLD authority: An ISD may delegate authority
for a TLD to a registry other than the globally recognized registry for
that TLD. This isolated subordinate authority tracks changes to the glob-
ally recognized registry, providing additional vetting of assertions about
second-level domains and potentially declining to include those that are
used for network abuse (e.g., malware domains).

The mechanism for ensuring consistency in a multiple-root environment
using RAINS is described in detail in Section 6.5 on Page 116.

4.4 End-Entity Authentication

The TLS protocol is used globally to secure online communications (HTTP
and SMTP communications, in particular). TLS enables the creation of end-
to-end encrypted and authenticated channels. To authenticate entities (usually
identified by domain names), TLS relies on certificates, which can be obtained

86

4.4 End-Entity Authentication

from hundreds of geographically and administratively distinct CAs. In the tra-
ditional TLS PKI, a single CA can issue a certificate for any domain and bogus
certificates can go unnoticed for long time periods due to a lack of transparency.
Given that the security of the majority of web-based financial and commercial
transactions relies on TLS, one would hope that its security is commensurate
with its widespread acceptance and use. Unfortunately, although CAs wield
significant power in the TLS ecosystem, their trustworthiness has recently been
tarnished by several events. Operational mistakes, social-engineering attacks,
and governmental compulsion have resulted in the issuance of fraudulent certifi-
cates for many high-profile sites [166, 167, 225]. In these cases, adversaries can
impersonate domains to clients by performing active man-in-the-middle attacks,
intercepting secure connections and stealing potentially sensitive information.
Software vendors also hold significant power in the TLS ecosystem, since they
manage the list of CA certificates that serve as the roots of trust.

For the SCION end-entity authentication PKI, we leverage a combination of
ARPKI [23,24] and PoliCert [235], which address the above issues and provide
provable security guarantees. ARPKI provides the basis for a transparent
and resilient infrastructure, while PoliCert allows domains to specify policies
governing the use of their certificates to achieve additional security objectives
and address the shortcomings of previous systems. The system we present is
deployable (in an incremental manner) both inside and outside of SCION. In
the inside case, however, SCION allows roots of trust to be defined at the ISD
level, through TRCs, instead of being distributed independently by different
software vendors. SCION allows the scope of these trust roots to be limited to
ISDs, unlike current systems that rely on global trust.

4.4.1 Background

For the issuance of illegitimate certificates to be detected, the operations of
CAs need to be transparent. Google’s Certificate Transparency (CT) frame-
work [149] proposed the use of append-only public logs to provide CA ac-
countability. The goal is to make all issued certificates visible in order to alert
domain owners and clients of any possible misbehavior. CT creates a system of
public logs, which maintain a database of observed certificates issued by trusted
CAs. The log can then provide evidence that it contains a given certificate, and
the proof can be checked by clients during the TLS handshake. Additionally,
the log is publicly auditable so that any party can fetch proofs of presence or
consistency. However, CT has several drawbacks. Specifically, CT’s main goal
is to detect suspicious behavior, and thus it does not actively protect clients
from ongoing attacks if an adversary successfully registers a bogus certificate
at a public log [167]. Nevertheless, public logs similar to those used by CT can
be employed to build systems such as ARPKI and PoliCert to provide strong
security guarantees.

87

4 Authentication Infrastructure

h1234

h34

h4

C4

h3

C3

h12

h2

C2

h1

C1

h12345678

h5678

h78

h8

C8

h7

C7

h56

h6

C6

h5

C5

h1234

h34

h4

C4

h3

C3

h12

h2

C2

h1

C1

Figure 4.8: Example of appending entries in chronological order to a Merkle
hash tree. The tree on the left-hand side represents the initial state
of the log, and the tree on the right-hand side represents the state of
the log after addition of certificates C5–C8.

Merkle hash trees‹ are generally used to implement public logs. Typically,
hash trees are binary trees in which leaves contain certificate-related data, and
non-leaf nodes contain the hashes of their two child nodes [174]. This structure
can be leveraged to efficiently prove that a leaf is part of the tree. Only one node
per level is needed in a proof of presence; hence, the proof size is proportional
to the tree height, which is Oplog2pnqq for n leaves. If leaf nodes are ordered
(e.g., lexicographically), the tree can additionally provide proofs of absence.
If nodes are appended chronologically, then the tree can also provide proofs
of consistency showing that the tree is indeed maintained in an append-only
manner. Proofs are based on tree roots, which are lightweight cryptographic
representations of the log at a certain point in time.

Example. Two Merkle hash trees are shown in Figure 4.8. It is possible, for
example, to prove to someone who holds h1234 and h12345678 that the tree on the
left-hand side was extended (without removing any existing entry) to obtain the
tree on the right-hand side, by providing h5678.

4.4.2 Problem Definition

In this setting, the adversary’s goal is to obtain a valid certificate and the
corresponding private key for a domain that is not owned by the adversary (e.g.,
in order to obtain secret information through a man-in-the-middle attack). To
this end, the adversary can either directly compromise the server in question
to obtain its private key (in which case the PKI does not play any role in the
attack; it is the server administrator’s responsibility to protect the private key)
or the adversary can try to produce a new valid certificate for that domain by
compromising a number of trusted entities. However, for a PKI to satisfy any
nontrivial security property, we assume that the adversary cannot compromise
all entities. We also assume that the network is not trusted and, therefore, that

88

4.4 End-Entity Authentication

the adversary can eavesdrop, modify, and insert messages at will. The main
properties we seek are the following:

• Compromise Resilience: Unless more than a threshold number of
trusted entities are compromised, it should be impossible for an adversary
to impersonate a domain by forging a certificate or policy that would be
accepted by clients.

• Balanced Control: All parties should be able to contribute towards de-
termining whether or not a domain’s certificate is valid, whether through
signing information or specifying parameters for connection establish-
ment.

4.4.3 ARPKI and PoliCert

Although ARPKI and PoliCert were initially developed as independent systems,
they are compatible and are combined into the authentication infrastructure that
we present in this section. We give a high-level description of these two systems
and refer the reader to the academic papers for more details [23, 24, 235]. We
start by listing the relevant entities in our infrastructure:

• Clients (usually browsers) can initiate TLS connections with servers
in any domain. Depending on the authentication data provided by the
server, a client can either accept the connection or display a warning/error
message.

• Domains are identified by names unique within a given isolation context,
and their servers respond to TLS requests from the clients. Domains
authenticate themselves to their clients by presenting their certificate(s)
and by using the corresponding private key(s).

• Certification authorities (CAs) are trusted entities responsible for issu-
ing certificates for public keys that are associated with a domain. CAs
must verify that the certificate requester is the legitimate owner of the
domain in question. Clients must have access to a list of trusted root
CAs, while intermediate CAs are certified by other CAs. CAs are also
responsible for monitoring logs to detect their misbehavior.

• Log servers maintain a tree-based record of valid certificates and policies.
Logs are able to prove that they behave in a consistent manner.

Subject certificate policies (SCPs) are central elements of the SCION end-
entity PKI. An SCP contains parameters regarding the usage and validation of
a domain’s certificate, such as the list of CAs authorized to sign the domain’s
end-entity certificate. Each SCP has an associated key pair, and at a given point
in time each domain can have only a single valid SCP. The policy private key is
used to (a) sign the policy binding in a domain’s certificate and (b) authorize
certificate revocations and policy updates. Because the parameters in an SCP
are bound to a domain’s identity and policy key pair, we encode an SCP as a

89

4 Authentication Infrastructure

series of standard X.509 certificates (signed by distinct CAs), where each X.509
certificate authenticates the policy public key and lists the policy’s parameters
in an X.509 extension.

Let n be a security parameter that denotes the minimum number of parties
(i.e., CAs and logs) that must be actively involved in asserting that an SCP has
been registered. Then, an SCP must be confirmed and signed by at least n´1
CAs, and it must be registered by at least one log server to be considered valid.
This n parameter is specific to each ISD and is defined in the TRC with the
ThresholdEEPKI field.

Since domains are expected to only infrequently change their policy, SCPs
are assumed to be stable (barring catastrophic events such as a weakness in a
widely used encryption scheme). Therefore, we require that SCPs be valid for
an extended period (of the order of months). Besides the end-entity PKI, SCPs
are also used to certify RAINS keys (i.e., a policy key can sign the domain’s
RAINS key).

To provide some resilience against CA compromise, we use multi-signature
certificates (MSCs), which allow multiple CA signatures to authenticate a
single public key and require only a certain threshold of the signatures to be
valid. Similarly to SCPs, an MSC is encoded as a series of standard X.509
certificates (signed by distinct CAs) authenticating domain D’s public key.
These standard certificates are followed by a special certificate that we refer
to as a policy binding certificate. The policy binding certificate is signed with
an SCP’s private key controlled by domain D itself, and contains the current
version number of D’s SCP and an X.509 extension that lists the hashes of
all certificates within the MSC. This allows the domain owner to change the
certificates within an MSC. Because the policy binding can be generated by
D independently of any CA, these changes can be made quickly. In order for
an MSC to be considered valid, a threshold number of its certificates (defined
in the policy) must be valid. An MSC with one certificate is equivalent to a
regular certificate, but contains an additional policy binding certificate.

Log servers are highly available entities that monitor issued certificates, re-
vocations, and policies. Each log maintains a certificate tree, which tracks
certificates (MSCs); a policy tree, which tracks policies (SCPs); and a consis-
tency tree, used to prove the append-only property of the log. The consistency
tree contains all MSC and SCP registrations, updates, and revocations in chrono-
logical order. Additionally, upon each update the log appends the concatenation
of the root hashes of the current certificate and policy trees to the consistency
tree. Merkle hash trees allow the log server to produce efficient proofs that a
leaf is present in or absent from the tree. These proofs can demonstrate that a
certificate is logged, not revoked, and compliant with all applicable SCPs. To
avoid frequent updates to the trees and thus to the proofs, objects are batch-
added periodically (e.g., every hour). The update frequencies of log servers
are public information, allowing clients to query them after each update or as

90

4.4 End-Entity Authentication

needed. When an object is accepted for insertion into a tree, the log server
schedules it and returns a signed receipt with the time at which the object is
guaranteed to be present in the log’s database. Log servers are required to
produce a proof for a specific entry (certificate or policy) on request, which
certifies the current validity of that entry. A log server is also required to provide
a proof of consistency by showing that its database has been correctly extended
from a previous version.

Client
(Browser)

Domain CA 1

CA n – 1 Log Server Log Servers

CAs

1.

…

2.

3.

4.

5.

synchronization

TLS connection

Figure 4.9: Overview of the SCP registration process.

SCP registration. At a high level, the SCP registration process (see also
Figure 4.9) works as follows:

1. The domain creates a registration request along with a list of CAs that
will confirm the registration. The request is sent to the first CA in the list.

2. The request is passed to the log, which performs verifications, synchro-
nizes with other logs and CAs, and returns a receipt.

3. The receipt is then sent to the second CA, which checks that the registra-
tion was carried out correctly and passes it to the next CA.

4. The first CA receives the receipt and performs similar verifications.
5. The domain receives the log receipt confirmed by n´1 trusted entities.

Thereafter, the domain can create a key pair with which it will authenticate
itself to clients. Then, the domain obtains standard X.509 certificates from
authorized CAs (specified in the policy) and combines them, along with a
policy binding (signed with its policy private key), into an MSC. The MSC is
registered and confirmed by multiple entities, similarly to the SCP registration.
A TLS connection can then be established.

After a successful SCP or MSC registration, the log returns a registration
receipt promising that the certificate or policy will be added to its database
within a certain amount of time. This registration receipt can be used as a
short-term confirmation that an SCP or MSC is in the log, but proofs are more
commonly used for this purpose. To successfully establish a connection to the
domain, the client needs proofs that the policy is registered, as well as proofs

91

4 Authentication Infrastructure

that the MSC is registered and not revoked. While anyone can request such
proofs from a log, they should be periodically retrieved by the domain and
stapled to the MSC and SCP. To request a proof, the domain sends a request
containing a hash of its MSC. The log uses this hash to locate the appropriate
leaf node in its certificate tree and generates a proof of presence or absence.
The log also produces a proof of presence for the domain’s policy, as well as a
proof that the policy and certificate trees’ root hashes are the most recent ones.
Additionally, proofs are confirmed by n´1 entities. The domain can then pass
these proofs and hashes on to the client. There is also a possibility that the log
does not have a proof for an SCP or MSC. It may be the case that the MSC,
SCP, or both do not have a corresponding log proof because the log has not yet
updated its database to reflect a registration. In this case, a registration receipt
from the log suffices as a proof of presence so that domains that newly register
a certificate and policy can begin serving customers as soon as possible.

4.4.4 Security Discussion

We now conduct an informal security discussion of our end-entity authentication
infrastructure. We assume that a domain D has correctly registered its policy
and certificate at the logs. We consider an adversary who is able to capture
trusted entities of the system and whose goal is to impersonate the domain.

First, we observe that an adversary without the private key corresponding to
a valid SCP for D cannot create a valid MSC for D and thus cannot impersonate
it. Constructing an MSC requires a policy binding. Because the policy binding
must be signed with D’s policy private key, an adversary without that key cannot
create any valid MSC. An adversary can either try to obtain that key directly
from the domain or produce a fake SCP, but this second option would require
compromising n entities. Even if we assume that the adversary has access
to the original policy’s private key, then the adversary cannot impersonate D
without compromising at least a threshold number of D’s trusted CAs. This
is due to the MSC validation process, which requires a valid MSC to contain
at least a number (specified in the policy) of valid certificates. An adversary
who has compromised the required number of trusted CAs and D’s policy
private key can impersonate D by creating a malicious MSC and serving it
to clients. However, to mount this man-in-the-middle attack the adversary
must receive confirmations (a registration receipt or log proof) from the log.
This requires registering the malicious MSC, which would make the fraudulent
certificate publicly visible. The adversary could also attempt to update the
SCP, but this would require compromising the number of CAs specified in the
policy. MSCs by design remove single points of failure, which mitigates other
threats such as too-big-to-be-revoked CAs [234]. If we assume that logs are not
malicious, then the above attacks can be detected since the adversary’s actions
will become publicly visible. If we consider that logs might be misbehaving,
gossip protocols [52] can be used as a last line of defense.

92

5 ISD Coordination

LAURENT CHUAT, ADRIAN PERRIG,
RAPHAEL M. REISCHUK, PAWEL SZALACHOWSKI

In this chapter, we describe how ISDs are discovered and how they coordinate
with each other, especially when a new ISD is created. The goal is for each ISD
to have a list of all other ISDs — specifically, an identifier and a description for
each ISD along with the roots of trust that enable authentication. An authority
could create such a list and distribute it, but this would conflict with SCION’s
goal that each ISD can operate independently and communicate with other ISDs
without any globally trusted entity. A global authority could also introduce a kill
switch to take down parts of the Internet, so instead we present a decentralized
approach.

In short, when an ISD joins the SCION network, its neighbors must announce
it through dedicated beacon extensions. This prevents situations in which two
new ISDs are created with the same identifier, as other ISDs have time to detect
whether an ISD is being created under a misleading identity (intentionally
or not). As ISD coordination is realized through beaconing, operations are
transparent and accountable. To cover the possibility that conflicts might happen
despite those preventive measures (due to negligence or malicious intent), we
propose mechanisms to detect and resolve such conflicts. We also describe
how ISDs are globally identified and how ISD descriptions (i.e., short textual
representations of the entity running the ISD) can be specified and updated.

Chapter Contents

5.1 Motivation and Objectives . 94

5.2 Announcing and Discovering New ISDs 97

5.3 Local Resolution of Conflicts 100

93

5 ISD Coordination

5.1 Motivation and Objectives

As we describe in other chapters, core beacons (Section 7.1.3 on Page 127)
and TRCs (Section 4.2.1 on Page 68) can be used to construct authenticated
core-segments across ISDs that already know of each other. However, we have
not described how new ISDs are announced or how conflicts are prevented
when two ISDs claim the same identity but have different TRCs. New ISDs
will indeed be created over time, and they should not be required to exchange
keys — out of band — with all other ISDs before joining the network. Also,
our assumptions regarding the honesty and cooperation of participants differ
for the intra-ISD and inter-ISD case. Inside an ISD, we can expect ASes to
collaborate, as they share a geographical, political, or organizational framework.
At a larger scale, however, we cannot expect all ISDs to fully trust anyone, so
we want to avoid a situation in which any single entity is responsible for the
management of the whole SCION network. For these reasons, we have devised
a process (described in this chapter) to announce, discover, and identify new
ISDs without any central authority. But first, we discuss existing solutions and
show why they are insufficient for our purposes.

Public-key certificates could be attributed to each ISD, but this would require
that a trusted authority takes part in the initial issuance process, and such an
authority could impersonate the entities for which it is responsible. Although an
impersonation attack would eventually become visible, it cannot be prevented.
Moreover, an attack can not only be caused by an ill-intentioned authority,
but can also be the result of a key compromise or an honest administrative
mistake. Self-certifying identifiers [7, 180] initially appear to be a promising
direction, but on closer consideration, the difficulty of revoking or updating
keys (to recover from key loss or compromise, for example) renders their use
impractical in this context.

Blockchains are often presented as a way to achieve global consensus and
implement a fully decentralized database. As decentralization and coordination
on a global scale are the main properties we seek here, it may seem that we
could build upon such a technology to achieve our goals in the context of ISD
coordination, but there would be drawbacks. A blockchain is computationally
expensive to maintain, peers need to be able to communicate with each other
(which we cannot assume here, since we are defining the architecture upon
which communication will be based), and consensus, when achieved through a
proof-of-work system, also raises issues: with the majority of computing power,
one can effectively manipulate the blockchain [200].

An absolute consensus is not needed to attribute identifiers to all ISDs.
Consensus might not even be possible or desirable on a global scale. Instead,
the system we describe tolerates ISDs having different views of the world,
but encourages them to find an agreement and deters misbehavior through
transparent operation. Besides, the information upon which ISDs must agree

94

5.1 Motivation and Objectives

is minimal: only the binding between a globally unique identifier and an ISD
(represented by a set of keys) must be determined, so we expect inconsistencies
to be extremely rare.

Given that we employ a decentralized approach, different ISDs may use
different methods, and this allows migration to new approaches over time.
At a high level, the approach we propose for ISD coordination consists of
three phases. In the first phase, a new ISD is announced in advance by all
its future neighbors, which allows detection of colliding identifiers and gives
administrators time to contact each other to resolve potential conflicts. In the
second phase, the neighbors of the new ISD propagate their final announcement.
During the last phase, if conflicts still exist, then each ISD can set some rules
and pick which entity is to be trusted for building its own list of ISDs.

5.1.1 Potential Attacks and Undesirable Behavior

To provide insight into why ISD coordination is needed, we consider some
unwanted situations. The difference between an attack and suspicious but
benign behavior is often small; the scenarios we present can be the result of
an error or malice, but we do not need to know the exact cause of abnormal
behavior to prevent it from disrupting normal operations.

Identifier Squatting

The first type of undesirable misbehavior happens when an ISD is created with
the same identifier as an already existing ISD. This situation is illustrated in
Figure 5.1a and can occur in different cases:

• A newcomer ISD 11 is intentionally trying to replace ISD 1 by advertising
the same identifier with a different path and different keys. To do so,
it needs the cooperation of ISD 4, which is already connected to the
network.

• ISD 4 is pretending to be connected to ISD 11 (although ISD 11 might
not even exist) and is making an announcement in order to replace the
existing ISD 1.

• ISD 2 and ISD 4 are both announcing — almost simultaneously — the
creation of new ISDs (ISD 1 and ISD 11, respectively) with the same
identifier, which results in a conflict.

The first two attacks are equivalent — from the victim’s (i.e., ISD 1’s)
standpoint — and can be prevented by attributing an identifier to the first ISD
who claims it. The result of doing so is that an attack cannot be successfully
carried out as long as private keys are not compromised, since updating a
TRC requires valid signatures. The third case, however, is more plausible and

95

5 ISD Coordination

will be addressed in the remainder of this chapter, in particular, through early
announcements.

Spurious ISDs

The second type of misbehavior concerns the situation in which many ISDs
are created with new identifiers and arbitrary descriptions in a short period,
as illustrated in Figure 5.1b. In that particular example, ISD 1’s announce-
ments might be legitimate, but the ISDs could also be fake and created with
the intention of disturbing communication in the rest of the network. This
situation is problematic, mainly for the following reason: an exhaustion or
overcrowding of the identifier space is possible (since identifiers are positive
integers). This could create conflicts and prevent someone who desires to create
a new legitimate ISD from doing so.

To address this problem, the number of ISDs that any existing ISD can
announce during a defined period should be limited. This makes an exhaustion
attack infeasible if the creation period is chosen such that it takes a few days to
create a single new ISD, and if the identifiers are represented with a sufficiently
large number of bits. This safeguard slows down the ISD creation process, but
this is desirable, since ISDs are the largest and most important structural unit in
SCION. As such, ISDs are expected to take time to build and stabilize.

ISD 2 ISD 4

ISD 1 ISD 1’

ISD 3

(a) Identifier squatting

ISD 1

ISD 3

ISD 2 ISD 4

ISD n

…

(b) Spurious ISDs

Figure 5.1: Examples of misbehavior in the context of ISD coordination.

Inappropriate Descriptions

The ISD descriptions could be misleading. Specifically, a new ISD could
be created with an available identifier but a deceptive description in order
to impersonate an existing ISD (e.g., a new ISD could be announced with
the description “USA” when an ISD with the description “United States of
America” already exists). Preventing inappropriate descriptions is more difficult
than preventing colliding identifiers, because uniqueness is not sufficient: two

96

5.2 Announcing and Discovering New ISDs

descriptions might be highly similar without being identical. Therefore, the
intervention of administrators is required to resolve such cases.

5.2 Announcing and Discovering New ISDs

In this section, we describe how new ISDs are identified, announced, and
discovered.

5.2.1 Identifiers and Descriptions

ISDs are globally identified by unique positive integers. These identifiers are
specified in the TRC and must be chosen with the help of neighboring ISDs
that are already part of the network and know the list of existing identifiers.
It is recommended that identifiers be picked in order, although this is not
strictly enforced (as it would make the resolution of identifier collisions more
complicated).

In addition to identifiers, all TRCs must also contain a human-readable
description field that briefly describes the entity running the ISD (e.g., a country
or a company name). Descriptions should not be misleading, and it is the
neighboring ISDs’ duty to verify that this condition holds before propagating
an announcement. Descriptions can be changed through TRC updates (if
neighboring ISDs approve the description change); identifiers, however, cannot
be updated.

5.2.2 Announcements

A new ISD must be advertised to the whole network through a dedicated core
beacon extension called an announcement that contains the TRC (version 0) of
the new ISD, which contains an identifier and a description. Announcements
containing invalid TRCs (e.g., with an insufficient number of signatures) must
be ignored. Newcomer ISDs should collaborate with their neighbors to create
their first TRC. Once the new TRC is created, it must be sent to all neighboring
ISDs, so they can start generating announcements.

The advantage of this approach is that beacons (and thus beacon extensions)
are signed by ASes from each ISD along the propagation path. Signatures
constitute evidence that these ISDs have seen or generated the content of the
beacon extension.

97

5 ISD Coordination

Early Announcement

During the early announcement phase, the announced TRC is valid but must
not be used until a 7-day period has elapsed, and the TRC must come with a
quarantine flag set to true.

Early announcements are produced by all the neighboring ISDs of the new
ISD for at least one week and, as beacon extensions, are propagated through
all core ASes of all ISDs. The recipients of an announcement set a timer to
7 days when the announcement is first received and they do not allow further
steps (i.e., the final announcement) to take place until this timer expires. This
gives some time to administrators to notice if another ISD is being announced
under an existing identifier. As ISD creation is expected to be a fairly rare
event, and as core PCBs propagate rapidly, unintentional identifier collisions
are unlikely to occur. Nevertheless, if a collision happens, administrators can
contact each other, agree to use different identifiers, and thus resolve the issue.
By “different” here we mean that the new identifiers must be both different
from the conflicting identifier(s) previously announced and different from each
other.

When an announcement is modified in any way and propagated again, a new
timer must be set by all receivers. ISDs are limited to making at the most five
concurrent early announcements. This means that other ISDs only maintain a
maximum of five running timers per source ISD. Also, an early announcement
is only valid for 14 days. After that period, if the second phase has not started,
an early announcement must be transmitted again to proceed.

Inappropriate descriptions should be detected by ISD administrators in this
7-day period, and the corresponding early announcements should be blacklisted
to avoid the propagation of unwanted final announcements in the next phase.

During the announcement period, the new ISD must start building its own
list of TRCs. For this to be possible, neighboring ISDs must provide an initial
list and/or start forwarding core PCBs to the new ISD.

Final Announcement

A final announcement (still in the form of a beacon extension) must be gen-
erated by all neighbors of the new ISD and contain its initial TRC — with
the quarantine flag set to false — when the 7-day period has ended. Because
each ISD has its own timer, and because announcements take some time to
propagate, final announcements should be generated and sent repeatedly 7 days
after the first early announcement was sent. This constitutes the second phase
of ISD creation. When a final announcement is received by a core AS, the
corresponding TRC is added to the local list and propagated further, if the
following conditions are met:

1. an early announcement containing the same TRC was received before,

98

5.2 Announcing and Discovering New ISDs

2. that early announcement is not blacklisted,
3. the corresponding 7-day timer has expired,
4. the identifier specified in the TRC is currently not in use,
5. no other early announcement (excluding blacklisted ones) containing a

TRC with the same identifier was received in the 7-day period.

If conditions 1–4 are not respected, then the final announcement is ignored.
If condition 5 alone is not met, then a conflict resolution procedure must be
initiated. When the final announcement has been propagated, the new ISD can
be considered part of the network and start communicating with other ISDs.

The details of how early and final announcements must be validated and
propagated by core ASes are specified in Algorithm 1. The isValid() function
returns true if conditions 1–4 are respected by the final announcement, and
hasConflicts() returns true if condition 5 is not respected.

Algorithm 1 Validating and Propagating ISD Announcements
1: data: ExistingISDs, EarlyAnnouncements, Timers, Blacklist
2: parameters: MinDays“ 7, MaxDays“ 14, MaxAnnouncements“ 5
3: upon reception of announcement a do
4: if a.quarantine = true then // early announcement

5: if not EarlyAnnouncements.contains(a) then
6: for iÐ 1 to MaxAnnouncements do
7: timer = Timers.get(a.sourceISD, i);
8: if timer.isNotRunning() then
9: timer.setTo(MinDays);

10: EarlyAnnouncements.add(a, timer, MaxDays);
11: break;
12: end if
13: end for
14: end if
15: Propagate(a);
16: else // final announcement

17: if a.isValid() then
18: while a.hasConflicts() do
19: ResolveConflicts();
20: end while
21: if not Blacklist.contains(a) then
22: ExistingISDs.add(a)
23: Propagate(a);
24: end if
25: end if
26: end if
27: end reception

99

5 ISD Coordination

5.3 Local Resolution of Conflicts

After the first two phases (i.e., early and final announcements), which take at
least one week, any remaining conflict is either intentional or the indication
that ISDs failed to coordinate to avoid picking the same identifiers. We now
describe how each ISD can resolve conflicts locally and we discuss measures
that can be taken if misbehavior is observed.

In this context, we define a conflict as follows: a number n of ISDs has cor-
rectly generated announcements for a new ISD with identifier i during a given
period, while a number m of other ISDs has correctly announced a different
ISD (i.e., with a different TRC) with the same identifier i during an overlap-
ping period, and at least one of the two corresponding final announcements is
received.1 There are several possibilities to resolve such a conflict:

• The decision can be based on the opinion of the majority (i.e., based on
maxpn,mq), but this might not be possible (i.e., if n“ m).

• Certain ISDs might be more trusted than others: by looking at which
group (n or m) the most trusted ISD is in, a decision can be made.

• The conflict can be manually resolved on a case-by-case basis.

In case of conflict, it is up to each ISD to make a decision based on the above
parameters. Conflicts may also concern similar descriptions, but such situations
necessarily require human judgment in order to be detected and resolved. A
conflict resolution procedure must result in incriminated early announcement(s)
being blacklisted.

5.3.1 Conflict Resolution Policy

A policy can be specified to automatically resolve conflicts involving identical
identifiers or descriptions. The policy must indicate whether the resolution
should follow the majority of ISDs (if applicable), or instead use a complete
list of ISDs ordered in terms of trust to make a decision. By default, new ISDs
are placed at the end of the list and thus older ISDs are more trusted. However,
administrators can arrange the list as they desire. Also, new ISDs are free
to re-order the list they initially obtained. Alternatively, more elaborate trust
metrics could be computed over time based on observed events.

1There might be even more conflicting groups, but we consider only two groups here for the
sake of simplicity.

100

6 Name Resolution

DANIELE ASONI, YIH-CHUN HU,
RAPHAEL M. REISCHUK, BRIAN TRAMMELL

While the path resolution process is necessary to turn a destination address into
a set of paths, this is not sufficient for establishing communication between
SCION-connected endpoints: we also need a way to turn an Internet name
into a SCION address. As name resolution and path establishment are separate
processes, with different timescales and triggered by separate events, we design
a dedicated infrastructure that is optimized for each purpose.

We begin with an analysis of what a name resolution service is good for. At
its core a naming service must provide a few basic functions, but in essence
associate a human-understandable name with machine-understandable infor-
mation. Although the Internet’s Domain Name System (DNS) has been used
and abused as a general-purpose distributed database, a useful Internet naming
service need only provide information that is necessary to establish and main-
tain communication with an Internet-connected entity: addresses, namespace
delegations, service information, certificates, and auxiliary information. There
are two entities in this ideal naming service: (a) The querier is a client that
wants to establish communication across the Internet with a named entity. That
client uses the naming service to retrieve the necessary information. (b) The
authority is an entity with the right to make assertions about names within parts
of the Internet namespace. Before looking at the specific interplay between
queriers and authorities, we start by discussing various possible resolution
types.

Chapter Contents

6.1 Background . 102

6.2 Name Resolution Architecture 104

6.3 Naming Information Model . 106

6.4 The RAINS Protocol . 114

6.5 The Naming Consistency Observer (NCO) 116

101

6 Name Resolution

6.1 Background

6.1.1 Resolution Types

The assertions for name resolution are essentially mappings of various forms:

• Name-to-address: given a name, return associated addresses.
• Name-to-name: given a name, return equivalent names.
• Name-to-service: given a name representing a service, return a name

and transport-layer ports for connecting to the service.
• Name-to-certificate: given a name representing a host or service, return

an end-entity certificate representing the named entity, for authentication
of a subsequent connection attempt with the named entity.

• Name-to-delegation: given a name representing a zone within the name-
space, return the public key used to verify assertions in the zone.

• Name-to-auxiliary-information: given a name representing an organi-
zation-level zone within the namespace, return information about the
zone and the organization behind it, analogous to the WHOIS service;
as well as any restrictions on names in the zone (e.g., for confusability
reduction).

• Address-to-name: given an address, return associated names, analo-
gously to reverse DNS.

6.1.2 Properties of an Ideal Naming Service

We consider a set of properties of an ideal Internet naming service as background
to selecting a design for SCION name resolution. A more in-depth discussion
of these properties, enumerated below, is given in an IETF draft [239]. An ideal
naming service must

• provide for names which are meaningful to human users;
• guarantee that different names are distinguishable by its users;
• allow for authority over names to be federated;
• allow a unitary authority for any given name to be transparently deter-

mined;
• operate without requiring trust in the operators of the name server infras-

tructure;
• provide for revocation of authority over a given name;
• allow assertions about names, and the nonexistence of a mapping for a

name, to be unambiguously authenticated;
• provide for consistency, and predictability in the presence of changes to

assertions about names, but

102

6.1 Background

• allow for explicit inconsistency when necessary, and global transparency
of this inconsistency;

• perform acceptably, in terms of availability, latency, and bandwidth
efficiency;

• allow clients to specify tradeoffs between privacy and performance.

Since an Internet naming service is designed to provide information about
Internet-connected hosts and services for the purposes of establishing a connec-
tion, note that assertion confidentiality (usually referred to in DNS literature
in terms of zone enumeration) is a non-goal of our ideal naming service. If
assertion confidentiality is required, an alternative service can be established
that provides access control to the information that should remain secret.

6.1.3 Notation

Throughout the chapter, we make use of the terms, abbreviations, and resource
record (RR) types defined in Table 6.1.

Term Definition

Assertion Mapping between a name and a property of that name
Shard Set of assertions for some authority and context
Zone Set of all shards and assertions for some authority and context

NCO Naming Consistency Observer (see Page 116)
RR Resource Record (fundamental data unit, see table below)
TLD Top-Level Domain (such as .ch or .com)
ZK Zone Key (key to sign assertions for the respective zone)
RZK Root Zone Key (special zone key used for the root zone)

(a) Terms and Abbreviations

RR Type Content

A 32-bit IPv4 address
AAAA 128-bit IPv6 address
CNAME Canonical name for a given alias
NS Responsible name server
PTR Pointer to domain name (e.g., address-to-name mapping)
SRV Service locator (locates service/protocol for a given domain)
TLSA Certificate or public-key association (see DANE [61])

(b) Resource Record (RR) Types

Table 6.1: Notation used in the context of name resolution.

103

6 Name Resolution

6.2 Name Resolution Architecture

We now turn our attention to designing protocols to provide this ideal naming
service, which we call RAINS (a recursive acronym for “RAINS, another
Internet naming service”) [240].

Why not just use DNS?

We note that the DNS protocol as used in the present Internet, when de-
ployed with the mandatory usage of DNS Security Extensions (DNSSEC)
and one root per ISD, meets most of the properties of our ideal name
system. Only explicit tradeoffs and explicit inconsistency are not well
supported by DNS with DNSSEC. An initial approach to providing name
resolution for SCION could therefore be to borrow DNS.
Using DNS would have the following advantages:

• It leverages an existing, widely deployed protocol, with which there
is widespread operational experience.

• It allows names for SCION-enabled nodes to be registered in the
same name resolution system as the non-SCION Internet, which
should make incremental deployment easier.

It would also have some serious disadvantages:
• DNS has no concept of explicit inconsistency or explicit tradeoff,

especially for privacy.
• Even with DNSSEC, DNS has poor operational security properties,

specifically lack of query anonymity and vulnerability to abuse as
an amplification attack vector.

• Since DNSSEC would be mandatory for SCION RRs, SCION-
enabled nodes could only use signed top-level domains (TLDs).
Many country-code TLDs remain unsigned.

• Support for extension mechanisms for DNS (EDNS0) and DNSSEC
varies widely among stub and recursive resolvers, which negates the
incremental deployment advantage above: lack of interoperability of
the minimum DNS required for SCION and other DNS-supporting
software and hardware would lead to difficult-to-debug issues.

The final disadvantage is the most troubling, and led to our decision to
build a new name resolution protocol for SCION.

The RAINS architecture is simple, and resembles the architecture of DNS.
A RAINS server is an entity that provides transient and/or permanent storage
for assertions about names, and a lookup function that finds assertions for a
given query about a name, either by searching local storage or by delegating to
another RAINS server. RAINS servers can take on any or all of three roles:

• authority service, acting on behalf of an authority to ensure properly
signed assertions are made available to the system;

• query service, acting on behalf of a client to answer queries with relevant
assertions, and to validate assertions on the client’s behalf; and/or

104

6.2 Name Resolution Architecture

• intermediary service, acting on behalf of neither but providing storage
and lookup for assertions with certain properties for query and authority
servers.

RAINS servers use the RAINS protocol, described in this section, to exchange
queries and assertions. RAINS clients use a subset variant of the RAINS
protocol (called the RAINS client protocol) to interact with RAINS servers
providing query services on their behalf. RAINS protocol connections between
servers are encrypted and authenticated. RAINS client protocol connections
between clients and query servers are encrypted and optionally authenticated. In
addition, the RAINS protocol provides object-level authentication. Section 6.4.1
provides details on bootstrapping trust using RAINS.

Authority service in RAINS resembles the role of authoritative servers in the
present DNS. Query service resembles the role of recursive resolvers. Intermedi-
ate service resembles the role of caching resolvers. RAINS is therefore a drop-in
replacement for the present DNS with better support for contexts and tradeoffs
and with mandatory delegation and authentication by signature chain. As with
DNS, a given RAINS server may play both the authority server and query
server roles at any given time, depending on configuration. However, future
implementations of RAINS could use other mechanisms for matching queries
and assertions, and moving assertions to where they can be most efficiently
matched with queries.

From the basic building blocks of these three services, any number of naming
service architectures could be built. Within SCION, RAINS authority services
are generally operated by TLDs (as isolation context root authority servers) as
well as domain name registrants or ISPs acting on their behalf. Intermediate
and query services are operated by ISPs and enterprise networks, and ASes
make query servers available via service anycast (see Section 7.5 on Page 153).

RAINS also integrates into SCION’s authentication infrastructure. End-entity
certificates for named hosts can be stored in RAINS, and RAINS intermediary
and query services support assertions signed via ARPKI (see Section 4.4).

There is an inherent tension between SCION’s architectural principle of
isolation and the need for a globally consistent namespace. RAINS on SCION
resolves this by supporting isolation transparency. Queries and assertions can
cross ISD boundaries, which is the basis of the Naming Consistency Observer
(NCO) described in detail in Section 6.5 on Page 116.

105

6 Name Resolution

So what is new in RAINS?

Though designed as a drop-in replacement, RAINS makes several radical
departures from DNS as presently specified and implemented:

• Delegation from a superordinate zone to a subordinate zone is
accomplished solely with cryptography: a superordinate defines the
key(s) that are valid for signing assertions in the subordinate during
a particular time interval. Assertions about names can therefore
safely be served from any infrastructure.

• All time references in RAINS are absolute: instead of a time to
live, each assertion’s temporal validity is defined by the temporal
validity of the signature(s) on it.

• All assertions have validity within a specific context. A context
determines the rules for chaining signatures to verify the validity
of an assertion. Within SCION, publicly available names within an
ISD exist within that ISD’s native isolation context. The use of con-
text explicitly separates global usage of the DNS from local usage
thereof, and allows other application-specific naming constraints to
be bound to names; see Section 6.3.3.

• Explicit information about registrars and registrants is available
in the naming system at runtime, combining the functionality of
WHOIS with the naming service.

• Sets of valid characters and rules for valid names are defined on a
per-zone basis, and can be verified at runtime.

• Reverse lookups are performed on a completely separate tree, sup-
porting delegations of any prefix length, in accordance with classless
inter-domain routing (CIDR) and the IPv6 addressing architecture.

6.3 Naming Information Model

Here we describe the information model for messages in the RAINS protocols.
For simplicity of description, we omit details on error handling and parts of the
information model necessary for protocol implementation and operation. The
detailed protocol specification is in our IETF draft [240].

RAINS operates on two different basic types of information: assertions
(Section 6.3.1) are mappings between a name and some property of the name,
which can be grouped into shards and zones (Section 6.3.2) for performance
and operational optimizations; and queries (Section 6.3.5) are expressions of
interest about certain types of information about a name. RAINS matches
queries to assertions that answer them.

6.3.1 Assertions

An assertion consists of the following elements:

106

6.3 Naming Information Model

• Context: name of the isolation context in which the assertion is valid.
Section 6.3.3 provides more details.

• Subject: the non-qualified name about which the assertion is made. A
non-qualified name is a local, not necessarily globally unambiguous
identifier (e.g., ‘foo’), which — in combination with the zone name
(e.g., ‘example.com’) — yields the fully qualified (i.e., unambiguous)
name (e.g., ‘foo.example.com’). The domain name separator here is
‘.’ and separates subject and zone.

• Zone: the name of the zone (e.g., ‘example.com’) in which the asser-
tion is made.

• Object: the data associated with the name of the given type.
• Type: the type of information about the subject contained in the assertion.

Each assertion is about a single type of data. Supported types include:

– Delegation: the authority associated with the zone identified by the
name (replaces the NS DNS record type for cryptographic delega-
tion; see below).

– Redirection: the authority servers for the zone identified by the
name (analogous to the NS DNS record type).

– Address: one or more addresses associated with the name, given
an address family (analogous to the A and AAAA DNS record types).

– Service-info: one or more layer-4 ports associated with the name,
if the name identifies a service (analogous to the SRV DNS record
type).

– Name: one or more names associated with the name (analogous to
the CNAME and the PTR DNS record types: a PTR-analog lookup is
defined by the zone in which the lookup is made).

– Certificate: an end-entity certificate representing the named entity,
for authentication of a subsequent connection attempt with the
named entity (analogous to the TLSA DNS record type).

– Nameset: an expression of the set of names allowed within a zone;
e.g., Unicode scripts or codepages in which names in the zone may
be issued. An assertion about a subject within a zone whose name
is not allowed by a valid signed nameset expression is taken to be
invalid.

– Registrar: a string identifying the registrar responsible for the
appearance of a delegation within a zone, for TLDs that allow
multiple organizations to modify their zones.

– Registrant: a string containing information about the registrant of
a zone within a TLD (analogous to the WHOIS service).

– Infrastructure-key: a public key by which a RAINS server can be
identified, for object security on RAINS messages.

107

6 Name Resolution

– External-key: a public key by which assertions in a zone can
be verified outside the delegation hierarchy, e.g., via an SCP as
described in Section 4.4.3.

• Issued: a timestamp at which the assertion was made.
• Expires: a timestamp after which the assertion is no longer valid.
• Signature: a signature generated by the authority, to authenticate the

assertion. This signature covers all elements within the assertion except
the signatures themselves. An assertion may have multiple concurrently
valid signatures.

Issued and expired timestamps are always expressed in terms of UTC. Since
the signature protects the timestamps as well, it is necessary to sign new as-
sertions before old ones expire. At a single point in time, it is possible to
have multiple active valid assertions with overlapping validity times for a given
xsubject, zone, context, typey tuple. The union of the object values of all of
these assertions is considered to be the set of valid values at that point in time.

6.3.2 Grouping Assertions: Shards and Zones

Assertion Space

Zone Zone Zone Zone

Sh

Sh

Sh

Sh

Sh

Sh

Sh

Sh

Sh

Sh

Sh

Zone Zone
.com.ch

example.ch foo.ch bar.com baz.com

my.example.ch
srv.foo.ch

Figure 6.1: Hierarchical zones with shards and assertions.

An authenticated assertion with a valid signature provides a proof of ex-
istence of a name. Another mechanism is necessary to provide a proof of

108

6.3 Naming Information Model

nonexistence; otherwise, malicious intermediary and query services could cause
false negatives for queries by simply refusing to forward matching assertions.
RAINS provides shards for this purpose.

A shard is a set of assertions for the same authority within the same context,
protected by an additional signature over all assertions within the shard, which
has the property that, given a subject and an authenticated shard, then either an
assertion of a given type exists within the shard, or does not exist at all. We
achieve this property by associating the shard with an exclusive shard range of
names appearing in a shard: a shard with the range ‘a’ to ‘b’ contains all names
in the zone and context that sort after ‘a’ and before ‘b’. This property allows
efficient verification of the nonexistence of an assertion for a given name at the
query.

Example. Consider a zone containing the names ‘aaa’, ‘aab’, ‘baa’,
‘cat’, ‘dog’, ‘nap’, ‘yyz’, and ‘zzz’, as illustrated in Figure 6.2. This
zone could be split into three shards: {aaa, aab, baa}, {cat, dog, nap},
and {yyz, zzz}. To ensure that a proof of nonexistence can be given for any
name other than these eight using only one of these shards, the shard ranges
overlap: the first shard has the range null–cat, the second the range baa–yyz,
and the third the range nap–null. Note that names falling between the names
in the shards can be disproved using either of the neighboring shards.

A zone is the entire set of shards and assertions for a given authority within
a given context. Figure 6.1 shows two zones (‘.ch’ and ‘.com’) with two
subordinate zones each. A zone may also contain assertions about the zone
itself; this is especially useful for self-signing root zones.

6.3.3 Isolation Contexts

All assertions are held to be valid within an explicitly named assertion context.
Assertion contexts are used to determine the validity of the signature by the
declared authority. There are two broad uses for assertion contexts: isolation

aaa aab baa cat dog nap yyz zzz

null — cat baa — yyz nap — null

cat

yyz

nullnull

baa

nap

Figure 6.2: Eight assertions aligned in three shards with overlapping ranges.

109

6 Name Resolution

and local assertion. Isolation contexts allow assertions and queries about an
ISD other than that from which a query was made.

Native isolation context Remote isolation context

RZK

RZK
ZK

ZK

ZK

ZK

ZK

ZK

ISD n ISD n

ISD r

. isd--r-

Figure 6.3: Isolation Contexts. RZK is the root zone key for an ISD; ZK is the
zone key for a given zone.

There are two kinds of isolation context (as illustrated in Figure 6.3):

• The native isolation context is identified by the special context name
‘.’. Assertions in the native isolation context are signed by the authority
for the subject name, with a signature chain rooted at the root authority
for the ISD in which the assertion is made, such that the authority resides
within that ISD (see also Figure 3.1 on Page 49).

• A remote isolation context is identified by the special context name
‘isd--r-’, where r is the number of the ISD at which the context is
rooted. Assertions in a remote isolation context are signed by the authority
for the subject name, with a signature chain rooted at the root authority
for the isolation domain identified by the context, such that the authority
resides within that ISD. Remote isolation contexts can be used to make
assertions about names as seen within other ISDs.

Assertions in an isolation context are intended to be publicly available
throughout the Internet. Since these assertions are made available to sup-
port connections to public services, resistance to zone enumeration is explicitly
not a design goal of the RAINS protocol.

Example. The following examples illustrate how contexts work. Consider
the name ‘simplon.inf.ethz.ch’ in the (default) context ‘.’. This context
is the native isolation context, so the signature chain is determined from the
name itself, rooted at the TRC for the current ISD. If the assertion is issued by

110

6.3 Naming Information Model

an authority in ISD 33, the chain is as follows:

TRC33 Ñ RZK33 Ñ ZKchÑ ZKethzÑ ZKinfÑ assertion

where TRC33 denotes the TRC of ISD 33, RZK33 its root zone key, and ZK the
zone key for a given delegation.

Now consider the name ‘simplon.inf.ethz.ch’ in the context ‘isd--44-’.
This is the remote isolation context for ISD 44, so the signature chain is again
determined from the name itself, but rooted at ISD 44’s TRC, as authenticated
against the current ISD’s TRC, as follows:

TRC33 Ñ TRC44 Ñ RZK44 Ñ ZKchÑ ZKethzÑ ZKinfÑ assertion

Note that both ISD 33 and ISD 44 use the same authority for the top-level
domain ‘.ch’, but the verification path depends on the initial root of trust for
each ISD. Other arrangements are possible; see Section 6.5 for more.

6.3.4 Local Assertion Contexts

Isolation contexts are useful for names pertaining to services made available to
the Internet at large. The basic mechanism isolation context uses — providing
an alternate signature chain to the root of a namespace — can be generalized.
RAINS provides for local assertion contexts so that intentional inconsistency
(often implemented in the current DNS) is transparent and can be authenticated.

A local assertion context is equivalent to a RAINS subject name designating
the namespace within which the assertion is made. When a local assertion
context is present on an assertion, the assertion is verified by following the
delegation chain from the root through the names in the context before following
the delegation chain for the name. Each context is then essentially an alternate
root for a new namespace. While the same effect could be achieved simply by
concatenating names together, separating this information into explicit subject
name and context name allows the semantically meaningful part, which should
be presented to the user (the subject name), to be separated from the namespace
designator, which should be user-accessible but otherwise is a matter of system
configuration.

Example: Split DNS. Consider an organization that places its workstations
in their own top-level namespace. A workstation named simplon might carry
the full name simplon.workstations. In the current DNS, this would be
achieved through “split DNS”, i.e., answering queries about the workstations
zone only on certain networks. This arrangement, however, is operationally
brittle and can lead to leakage of both queries and names beyond their intended
scope.

111

6 Name Resolution

To implement this split within RAINS, ETH Informatik could place assertions
about its workstations in the local assertion context isg.ethz.ch, in essence
creating a local root namespace containing the workstations zone. The
signature chain for these assertions starts with the name components in the
context before considering the subject name:

TRC33 Ñ RZK33 Ñ ZKchÑ ZKethzÑ ZKisgÑ ZKworkstationsÑ assertion

Note that the zone key for workstations above is local to isg.ethz.ch,
unrelated to the zone key for the TLD workstations, if it exists.

Additional information can be placed in a context beyond the name of the
local root. This additional information is separated from the authority part by a
context marker, the special name cx--. Additional information in a context is
used to group assertions signed by the same local root, and to provide a way to
attach contextual information to queries.

Example: CDN zones. Consider a content delivery network (CDN) sepa-
rating content into zones (data centers from which content is served) based on
geography. It creates a local assertion context some-cdn.com, and places in-
formation about the zone in the additional context part: e.g., the local assertion
context zrh.cx--.some-cdn.com names servers hosting content in a CDN’s
Zurich data center. A client could represent its desire to find content nearby by
making queries in the zrh.cx--.some-cdn.com, fra.cx--.some-cdn.com
(Frankfurt), and ams.cx--.some-cdn.com (Amsterdam) contexts. Note that,
in this case, assertions in each of these content zones will be signed by the same
delegation chain .some-cdn.com.

Local assertion contexts can be combined with remote isolation contexts, as
well; here, the remote isolation is inserted into the signature chain before the
name components in the context.

Example: Combining local and isolation contexts. Consider the name
example.com within the context zrh.cx--.some-cdn.com.isd--44-, as-
serted within ISD 33. Here, the signature chain for the context is rooted at ISD
44’s TRC, then follows the authority part of the local isolation context before
looking for names in the root:

TRC33 Ñ TRC44 Ñ RZK44 Ñ ZK1
comÑ ZKsome´cdnÑ ZK2

comÑ assertion

Here ZK1
com is the zone key for the top-level domain .com, while ZK2

com is a
local key signed by some-cdn.com.

112

6.3 Naming Information Model

6.3.5 Queries

A query is a request for a set of assertions, shards, and zones supporting a
conclusion about a given subject-object mapping. It consists of the following
information elements:

• Context: the isolation context or local context in which responses will
be accepted. A query may also name a special any context, signifying a
willingness to receive information about names in any context available
at the query server.

• Subject: the name about which the query is made; in contrast to asser-
tions, the subject name here is fully qualified.

• Types: a list of the types of information about the subject that the query
requests.

• Valid-until: a client-generated timestamp for the query after which it
expires and should not be answered.

• Token: a client-generated token for the query, which can be used in the
response to refer to the query.

• Options: a set of options by which a client may specify tradeoffs (e.g.,
reduced performance for improved privacy).

A response to a query consists of a message containing a set of assertions
bound to the token supplied by the client in the query.

When used with the RAINS client protocol, the query server performing
verification may sign the entire response; this is an assertion that the query
server has verified the signatures from the appropriate roots, leaving the client
only to verify the query server’s signature on the whole response.

6.3.6 Registrar and Registrant Assertions

The registrant object type in the RAINS data model associates civil information
about a name’s registrant (organization or legal personality owning an entry
under a top-level domain), and in essence integrates WHOIS into the naming
service. The presence of a registrant object on a name identifies that name as a
registrant-level domain, i.e., a name that exists due to a contractual relationship
with a domain name registrar. This integration has two advantages: first, it
provides authentication of WHOIS information. Second, it allows operational
decisions to be taken based on WHOIS information.

The registrar object type identifies the registrar responsible for a given name’s
existence. This allows operational decisions to be taken based on the registrar,
e.g., to block a registrar that is predominantly responsible for malware domains.

113

6 Name Resolution

6.3.7 Augmented Assertion Authentication

To verify the authenticity of an assertion, a client or a query server can verify
the signature against the delegation for the zone containing the assertion. The
delegation assertion for that zone can be verified against the delegation from
the zone containing it, and so on all the way back to the root delegation from
the TRC for the isolation context. This delegation chain authentication has
identical properties to the verification of an RRSIG in DNSSEC. It also has
identical drawbacks: each level of delegation must be trusted in order to verify
a name at the leaf.

RAINS provides for signatures by external keys on assertions, i.e., those out-
side the delegation hierarchy, to provide additional and/or parallel verification
of the authenticity of the assertion. This facility, together with the certificate
object type for storage of end-entity certificates, provides two-way integration
between RAINS and ARPKI (see Section 4.3.2 on Page 84).

6.3.8 Address-to-Name Mapping

Information about addresses in RAINS is stored in a separate tree, indexed by
address and prefix. An address assertion is similar to a name assertion, but is
indexed by subject address as opposed to subject name, and the hierarchy of
names is built upon delegation from less-specific to more-specific prefixes. Ad-
dress assertions may only contain delegation, redirection, name, and registrant
type objects.

Contexts are also available for address assertions, but the native isolation
context may only contain assertions for SCION addresses within its ISD, remote
isolation contexts may only contain assertions for SCION addresses within the
remote ISD, and local contexts may only contain assertions for non-routable
addresses within the address family (e.g., RFC 1918 [210] or unique local
addresses (ULAs) [110]).

6.4 The RAINS Protocol

The details of the RAINS Protocol and the RAINS Client Protocol are specified
in an Internet-Draft [240]), and consist of a relatively simple mapping of the
information model in Section 6.3 to messages encoded in the Concise Binary
Object Representation (CBOR) data format [39] that can negotiate operation
over any underlying transport protocol that provides reliable, confidential,
and authenticated message or stream transport. Our initial implementation
experience with RAINS uses TLS over TCP.

RAINS is fundamentally a message-exchange protocol. A client sends
queries to a configured query server (by default, this service is listening on an
AS-level service anycast address), and expects responses. A query server may

114

6.4 The RAINS Protocol

send queries to other query servers and/or authority servers to express interest
in information about a given name. A query server sends assertions, shards, and
zones to other servers in response to queries, or based on some other interest
presumed by the query server.

Within SCION at present, query and intermediary servers are organized in a
hierarchical cache. Each AS runs a service anycast query server, and queries
that cannot be served out of that query server’s cache are delegated to the service
anycast query server of one or more upstream ASs. Query and intermediary
servers may also recurse to the authority server for the zone, according to their
configuration. However, the architecture of RAINS does not necessarily imply
hierarchical caching: intermediary servers may connect to each other via a
weighted distributed hash tree, for example, and authority servers may push
assertions to intermediary and query servers without having been asked. This
flexibility allows different networks to use different inter-server topologies for
different performance tradeoffs.

6.4.1 Query Server Discovery and Bootstrapping Trust

When a RAINS client first connects to a network, it has no information about
the available RAINS servers or the keys used to establish the authenticity of
assertions it will receive from them. We assume that both the TRC and the
address of a local RAINS query server are made available to a host during
the host’s initial configuration process. The TRC is available from the path
dissemination process (see Section 4.2.3), and refers to the naming root key
for its isolation domain. The address of the local RAINS server is provided at
endpoint configuration time.

The TRC contains the public key for the naming root for the ISD’s local
isolation context. With this root, and the address of a local query server, the
client can now begin using the query server for name resolution. Whether the
client trusts the query server to verify the authenticity of names, or does the
authenticity verification itself with the naming root key taken from the TRC,
is a matter of the client’s configuration: in general, clients will be configured
to trust their “home” query servers, and optionally to perform verification of
assertions received from local query servers on unknown networks.

Note that since the naming root key for an isolation domain is contained
within that ISD’s TRC, it cannot be forged by a malicious access network.

Clients may be configured to trust specific query servers other than the local
query server. In this case, the client performs a name resolution for the name
of its trusted query server using the local query server, verifying the signature
chain itself. If the trusted query server is in a different ISD, it issues this query
in the remote isolation context for that ISD. It then connects to the trusted query
server, verifying the TLS certificate against a pinned certificate for that server.

115

6 Name Resolution

Example. A mobile client, associated with giant-enterprise.co.uk and
usually connected via AS 337 in ISD 2, roams on to AS 404 in ISD 7. During
association with this network, it makes a service anycast query to find a query
server in AS 337 in ISD 2 for the address of rains-query.giant-enter-
prise.co.uk in the remote isolation context isd--9-, without delegating
assertion authentication to the anycast query server. It also queries for the
certificate of rains-query.giant-enterprise.co.uk, if this is not pinned
or otherwise available through ARPKI. Once it has the address and certificate
of the trusted query server, it connects, authenticates the trusted query server
using the certificate, and begins issuing queries, delegating authentication to
this trusted server.

6.5 The Naming Consistency Observer (NCO)

Isolation, as noted, is a fundamental principle of the SCION architecture. At
the same time, most users of naming systems expect global consistency in name
resolution: even if a name does not resolve to a given address everywhere,
the name should always point to the same service or content. “Owners” of
names in the global namespace further expect exclusion: that their publication
of assertions of a given namespace precludes other entities from publishing
assertions about the same namespace. Global consistency and exclusion are
impossible without a single global root of trust for naming, which runs counter
to the principle of isolation.

To reconcile this conflict, RAINS provides naming isolation transparency.
Entities connected to one ISD can observe name assertions in any remote ISD.
An additional facility built on top of RAINS, the naming consistency observer
(NCO), provides continuous monitoring of inconsistencies among assertion
signature chains in different ISDs, which ensures that any violation of global
consistency and/or exclusion is publicly observable. The NCO operates on the
principle of deterrence: since illegitimate behavior is made public, it should be
rare.

Recall from Section 3.4 on Page 48 that, in the normal case, different ISDs
have different root zones signed with different keys (derived from the ISD’s
TRC), but each root zone delegates to the same key for each TLD as shown
in Figure 3.1 on Page 49. However, there are certain cases where an isolation
domain might want to “edit” a TLD, by providing delegation to a different set
of registrant-level domains (RLDs) (the level below the TLD, corresponding to
organizations or other “owners” of names that have paid a registrar to place an
entry in a name registry) than that provided by the primary operator of the TLD,
or by failing to sign a delegation to a TLD. It does this by operating a shadow
authority for that TLD, which may implement one of the following policies for
each TLD or RLD:

116

6.5 The Naming Consistency Observer (NCO)

• New TLD adoption and TLD quarantine: New TLDs created within
a set of ISDs may be held over for some period of time while the TLD
operator’s practices are evaluated by the ISD.

• RLD quarantine: Newly created RLDs may only be available within an
ISD’s native isolation context after some period of time has passed, e.g.,
to ensure that they are not primarily used for abusive purposes (such as
phishing landing pages or malware command and control).

• RLD blacklist: RLDs that are exclusively or primarily used for abuse
can have their delegations from the TLD removed by an ISD after having
this abuse demonstrated according to some policy followed by each ISD.

In any case, edits to TLDs are limited to either delegating to the RLD that
the TLD operator delegates to, temporarily failing to delegate to an RLD (in the
case of quarantine), or permanently failing to delegate to an RLD (in the case
of blacklisting). Delegation to a different RLD key than that delegated to by
the TLD operator — completely inconsistent naming — is treated as an error
condition.

The purpose of the NCO is to make all such inconsistencies in native isolation
contexts in different ISDs globally transparent, to detect and allow ISDs to
correct unintentional inconsistencies, and to detect and repair error conditions.
The NCO consists of a distributed service, run on servers in each ISD. For each
ISD, it provides an authoritative view of that ISD’s naming consistency policy
(whether it performs RLD quarantine and what its timeouts are, its enumer-
ated set of TLD delegations, and its enumerated RLD blacklist), and accepts
RAINS delegation assertions sampled from various points in the infrastructure
to compare against those policies. Sampled delegation assertions are shared
with NCO servers in other ISDs, to be compared with those ISDs’ views of the
same delegations in their own native isolation context.

Sources of sampled delegation assertions include:
• Query servers can be configured to send a sampled set of delegation

assertions used in verifying assertions on behalf of clients to the NCO
server for their ISD.

• TLD authority servers can bulk-transfer delegation assertions to the NCO
servers for each ISD on any change.

• RLD authority servers can send their public keys (in the form of a self-
signed delegation assertion inside a local context) to the NCO servers for
the ISD(s) providing their connectivity on any change.

• Specially deployed NCO clients can query for RLD assertions and report
the resulting delegation assertions to designated NCO servers. The set of
query targets can be derived from other sources of data available to the
NCO.

Since inconsistencies uncovered by the NCO generally require human inter-
vention and/or policy decisions to correct, the output of this process is made

117

6 Name Resolution

available via a RESTful API and a web front end, also operated by each ISD.
Remedies for correction of intentional errors and undeclared inconsistency are
a matter for inter-ISD coordination (see Section 3.5 on Page 51).

Since the NCO operates primarily through deterrence, it is not necessary
that sampled delegation assertions cover every inconsistency with policy within
some bounded time. It is enough that ISD operators know that edits they make
to TLD delegations are visible, and that someone is watching. The sampling
rate for sampled assertions at a query server should be selected to balance the
tradeoff between the likelihood that maliciously transient inconsistency goes
undetected with the overhead of sending assertions to the NCO.

118

7 Control Plane

SAMUEL HITZ, ADRIAN PERRIG,
STEPHEN SHIRLEY, PAWEL SZALACHOWSKI

In this chapter, we discuss SCION’s control plane, whose main purpose is to
create and manage path segments, which can be combined into forwarding
paths to transmit packets in the data plane.

We first describe how path exploration is realized through beaconing, then we
discuss the management of path segments (registration, lookup, and revocation),
failure resilience, and the use of anycast to enable services to communicate with
each other. We also show how SCION allows AS-level hierarchical anycast
services to be built, and finally we describe the SCION Control Message
Protocol (SCMP).

Chapter Contents

7.1 Path Exploration and Registration 119

7.2 Path Lookup . 132

7.3 Secure Path Revocation . 138

7.4 Failure Resilience and Service Discovery 146

7.5 AS-Level Anycast Service . 153

7.6 SCION Control Message Protocol (SCMP) 155

7.7 Time Synchronization . 159

7.1 Path Exploration and Registration

In this section, we go into the details of generating and propagating path-
segment construction beacons in SCION. We describe the control-plane format
of a path, how beacon construction is initiated and propagated, and how ASes
generate diverse paths.

119

7 Control Plane

7.1.1 Path-Segment Construction Beacons (PCBs)

SCION introduces path-segment construction beacons (PCBs) to enable path
exploration and registration. PCBs are used for intra-ISD and inter-ISD (core)
path exploration, and contain topology and authentication information. They
can include additional metadata that helps with path management and selection.
Broadly speaking, a PCB represents a single path segment that can be used to
construct end-to-end forwarding paths. Formally, a PCB is defined as

PCB“ x INF } ASE0 } ASE1 } . . . } ASEn y (7.1)

where INF is an info field, and each ASEi represents an AS entry that contains
all information about a particular AS on the path segment represented by the
PCB.

In the following, we describe all elements included in a PCB. The actual wire
format of a PCB is presented in Figure 15.13 on Page 357.

Info Field (INF)

The first component of every PCB is the info field (INF), which provides basic
information about the PCB. Specifically, the info field contains the following
elements:

INF“ x FlagsINF } TS } ISD } SegLen y (7.2)

where FlagsINF is used in the forwarding path to describe the type and the
direction of the constructed end-to-end path, TS is a timestamp that denotes
when the PCB’s propagation started, ISD is an identifier of the isolation domain
within which the beaconing was initiated, and SegLen denotes the length of the
forwarding path’s segment (this field is set to 0 during the beaconing).

More information about the format of the info field is provided in Sec-
tion 15.1.3 on Page 347.

AS Entry (ASE)

The complete information about an AS in a PCB is called an AS entry and is
defined as follows:

ASE “ xMeta }HE } PE0 } PE1 } . . . } PEm } RevToken } Ext } Σ y (7.3)

The Meta field contains metadata describing the AS that generated a given entry.
It contains ISD and AS identifiers (which together globally identify the AS),
followed by the TRCVersion and CertVersion fields, which specify the TRC
and certificate version number that the AS uses. It also signals what size of
interface identifiers is used by the AS and the size of the maximum transmission
unit (MTU) within the AS’s network. Then, an AS entry consists of a single

120

7.1 Path Exploration and Registration

hop entry HE, a list of optional peer entries PEi, a revocation token RevToken,
which enables revocation of any interface of the entry in an authenticated
fashion (as we describe in Section 7.3), and optional beacon extensions Ext.

Each AS entry is signed with a private key that corresponds to the public key
certified by the AS’s certificate with version CertVersion. The corresponding
signature Σ includes the PCB’s metadata INF, the current AS entry ASEi (with-
out signature), and all previous AS entries in the PCB. Formally, the signature
Σi of AS entry ASEi in a PCB is defined as follows:

Σi “ SignKpINF } ASE0 } ASE1 } . . . } ASEi-1 } ASE1iq (7.4)

where ASE1i is the AS entry ASEi without its signature, and K is the AS’s private
key (the corresponding certificate can be identified through the CertVersion
field). Beacon extensions can contain unprotected fields, which are not included
during the signature creation.

More information about the AS entry is presented in Section 15.3.1 on
Page 357.

Hop Entry (HE)

A hop entry has the following format:

HE“ x InISDAS } EgISDAS } InIF } EgIF } InMTU }HFH y (7.5)

where InISDAS is a concatenation of the ISD and AS identifiers of an ingress
(i.e., the previous) AS, while EgISDAS identifies an egress (i.e., the next) AS.
If a hop entry belongs to the first/last AS entry, then the ingress/egress ISD and
AS identifiers are set to 0. The InIF and EgIF fields denote an identifier of the
ingress and egress AS’s interface, respectively, and the InMTU field specifies
the MTU of the ingress interface. These fields help an end host to identify
paths at the interface-level granularity and their MTUs. The last field HFH is a
hop field that includes the authenticated information of the ingress and egress
interfaces.

To allow end hosts to explicitly select paths to reach other end hosts, the hop
fields are propagated with the corresponding topology information to the end
hosts (see below).

Details of hop entries are discussed in Section 15.3.2 on Page 358.

Peer Entry (PE)

Through the peer entry, an AS announces that it has a peering connection to
another AS. Peer entries have the same format as hop entries, however, the first
PeerISDAS pair identifies a peer AS (not an ingress AS):

PE “ x PeerISDAS } EgISDAS } PeerIF } EgIF } PeerMTU }HFP y (7.6)

121

7 Control Plane

The PeerIF and EgIF fields describe interface identifiers of the peer and egress
ASes, and the PeerMTU field is an MTU value of the peer interface. Contrary to
the hop field HFH in a hop entry, the hop field HFP in a peer entry authenticates
the permission to use the peering between the peer and an egress interface.

More details on peer entries can be found in Section 15.3.2 on Page 358.

Hop Field (HF)

Finally, we introduce the hop field (HF), which is contained in hop entries and
peer entries. A hop field is used directly in the data plane for packet forwarding:
it specifies the incoming and outgoing interfaces of the ASes on the forwarding
path. To prevent forgery, this information is authenticated.

A hop field encodes one of three cases for connecting adjacent ASes:
1. customer Ñ provider: the egress interface connects the provider (who

created the hop field) with its customer,
2. core ASÑ core AS: the hop field encodes information for the forwarding

performed between core ASes,
3. peering links: the peer interface connects the AS (that created the hop

field) with its peer AS over a peering link.
A hop field can be part of a hop entry or of a peer entry. We first discuss the

case in which the hop field is contained in a hop entry. The hop field is then
represented as follows:

HFH “ x FlagsHF } ExpTime } InIF } EgIF } σH y (7.7)

where the FlagsHF field describes the purpose of the hop field (thanks to this
field, it is possible to encode forwarding cases other than the ones listed above,
see Section 8.2), ExpTime defines for how long the hop field is valid (an
expiration time of a hop field is an offset relative to the PCB’s info field
timestamp TS), InIF identifies the ingress interface (according to the direction
of the beaconing), EgIF identifies the egress interface, and σH is a message
authentication code (MAC) computed as

σH “MACKpTS } Flags1HF } ExpTime } InIF } EgIF } HF1q (7.8)

where Flags1HF is the FlagsHF field with only immutable flags set (see Sec-
tion 8.1 on Page 162), HF1 is the hop field of the previous AS (according to
the direction of the beaconing) without its flag field included, and K is a local
symmetric key, known only to the AS that creates the hop field.

In case the hop field is contained in a peer entry, the structure is slightly
different:

HFP “ x FlagsHF } ExpTime } PeerIF } EgIF } σP y (7.9)

122

7.1 Path Exploration and Registration

The differences to the previous case are (a) replacing the InIF field with the
PeerIF field identifying the ingress interface of the peering link, and (b) the
authentication code σP, which is now computed as

σP “MACKpTS } Flags1HF } ExpTime } PeerIF } EgIF } HF1Hq (7.10)

where Flags1HF is the FlagsHF field with only immutable flags set (see Sec-
tion 8.1 on Page 162), and HF1H is the hop field from Equation 7.7 without its
flag field included. In other words, the verification of a peering link requires a
locally generated provider-customer hop field.

More details on the format of hop fields is provided in Section 15.1.3 on
Page 348.

7.1.2 Intra-ISD Beaconing and Path-Segment Registration

Paths in SCION are made available through the following two procedures:
1. beaconing (i.e., path exploration), which builds and propagates PCBs

(from which path segments are created); and
2. registration of path segments to make them available to other entities.
The PCB generation process is initiated by each core AS, once per propa-

gation period. The propagation of PCBs immediately follows PCB generation.
When a PCB is received by an AS, its beacon server registers the contained
path segment at the path servers, extends the PCB, and propagates the PCB
further downstream. These steps are presented in Figure 7.1 on the next page.
The propagation period is a parameter specified by each AS; its default value is
5 seconds in our current implementation.

Initiating Beaconing

Intra-ISD beacons are disseminated top-down (i.e., from core ASes to leaf
ASes). Each core AS, through its beacon server, initiates the path exploration
process by creating an initial PCB and propagating it downstream to each of its
customer ASes. A core beacon server propagates a PCB to each customer. The
process is repeated every propagation period. The beacon server inserts (among
other information) the initial AS entry ASE0 in the PCB. In this case, ASE0’s
hop entry HE includes an initial hop field with ingress interface identifier set to
‚ (indicating an empty value)

HF0 “ x FlagsHF } ExpTime } ‚ } EgIF } σ0 y (7.11)

since HF0 represents the first hop and as such has no ingress interface (see
Equation 7.7). We also use the empty value null for the previous hop-field
entry:

σ0 “MACKpTS } Flags1HF } ExpTime } ‚ } EgIF } nullq

123

7 Control Plane

Upstream

Beacon Server

Local

Beacon Server

Local

Path Server

Remote (Core)

Path Server

Downstream

Beacon Server

beacons

TRC/Cert Req

TRC/Cert verify/cache

Periodically select k up-paths

k selected up-paths

TRC/Cert Req

TRC/Cert verify/cache

Periodically select k down-paths

k selected down-paths

TRC/Cert Req

TRC/Cert verify/cache

Periodically select ℓ beacons

ℓ selected beacons

TRC/Cert Req

TRC/Cert verify/cache

Figure 7.1: Message sequence chart illustrating the beaconing and path-segment
registration process.

since no previous hop field exists (see Equation 7.10).
Using the combination of the info field’s absolute timestamp TS and the hop

field’s relative duration ExpTime, each AS computes the absolute expiration
time of the hop field. When the expiration time is exceeded, the hop field is
considered expired and an AS’s border router (the one assigned to EgIF) will
drop packets with expired hop fields. The initial hop field denotes the beginning
of a path and authenticates a forwarding decision for every packet that

• enters the AS through the interface EgIF and terminates inside the AS;
• originates from the AS and exits through the interface EgIF; or
• at this AS, switches to another path (which has to begin at this AS as

well).

124

7.1 Path Exploration and Registration

Finally, the beacon server signs the beacon and sends it to a border router
(which corresponds to the EgIF identifier as specified in the hop field). The
beacon server knows the mapping between interface identifiers and border
router addresses from the AS discovery service (see Section 7.4.6).

PCBs are disseminated within packets addressed to the beacon service.1

Initial PCB packets have to be processed differently from data packets as they
do not contain full forwarding paths. To enable communication between two
beacon servers in neighboring ASes a special one-hop path is created (see
Section 15.1.4 on Page 351). The PCB is sent to the egress router, which then
forwards it to the neighboring border router of the downstream AS.

Beaconing by Non-core ASes

The ingress border router of the downstream AS receives the PCB packet,
detects that the destination is a SCION service address, and sends it to one
of its beacon servers.2 The beacon server verifies the structure and the sig-
nature of the PCB. The PCB contains the version numbers of used TRC(s)
and certificate(s). It enables the beacon server to check whether it has the
relevant TRC(s)/certificate(s); if not, it can be requested from the upstream
beacon server, and then forwarded to a local certificate server. After the PCB
verification is successful, the beacon server adds the PCB to its local database.
The process is depicted in Figure 7.1.

Every propagation period (the time interval is configured by the AS), the
beacon server selects the ` best PCBs from its database and continues path
exploration by sending the PCBs to its downstream ASes (in our current imple-
mentation `“ 5). PCB selection criteria are set according to local AS policies.
The selection process is presented in detail below in Section 7.1.4.

For every selected PCB and for every interface that connects to a downstream
AS, the AS creates a new PCB by adding a new AS entry. The AS entry
includes an HF that authenticates the permission to send traffic between ingress
and egress interfaces (see Equation 7.7), and HFs that authenticate forwarding
between the peer interfaces and the egress interface (see Equation 7.9). (The
AS can set an HF as forward-only, which denotes that the HF can be used only
for transit, i.e., cannot be used to deliver a packet to the AS’s end hosts.) The
set of ` created PCBs are sent to the border router corresponding to the egress
interface and forwarded to the downstream AS (see Figure 7.1).

1SCION introduces service addresses to address a service instance (with unknown actual
address) in a remote AS. See details in Section 7.4.7 and Section 15.2.

2If there are several beacon servers in the AS, the PCB is sent to only one. The details are
presented in Section 7.4.7 on Page 152.

125

7 Control Plane

Path-Segment Registration

Intra-ISD beaconing provides ASes with paths to communicate with their
core ASes. To make paths accessible to their own and remote end hosts,
the paths need to be published. Every time interval (called a registration
period, determined by the AS, and set by default to 5 seconds in our current
implementation), a beacon server selects two sets of path segments:

1. up-segments: to allow a local end host to contact core ASes, and
2. down-segments: to allow remote end hosts to fetch paths from core ASes

towards a target AS.
An AS can set different selection policies for these two sets (see Section 7.1.4).

More specifically, in every registration period, beacon servers execute the
following:

1. From the cached PCBs, select k PCBs that will be used as up-segments,
and another k PCBs that will be registered as down-segments. As a
default value, we use k “ 5.

2. Remove all unprotected (i.e., non-signed) fields from the beacon exten-
sions.

3. To every selected PCB, add a new AS entry with a final hop field of the
following format:

HFH “ x FlagsHF } ExpTime } InIF } ‚ } σ y (7.12)

Only the ingress interface identifier is specified (i.e., EgIF is set to ‚)
since the path ends at the AS.

4. If the AS has peering links, for each peering link add to the AS entry a
hop field of the following format:

HFP “ x FlagsHF } ExpTime } PeerIF } ‚ } σ y (7.13)

Only the peer interface identifier is specified (i.e., EgIF is set to ‚) since
the path ends at the AS.

5. Sign every selected beacon and append the computed signature. Such
modified PCBs are then called path segments.

6. Register the resulting up-segments with a local AS’s path server, and the
down-segments with a core path server from a local ISD.

Unprotected fields of beacon extensions are removed for efficiency reasons
(to reduce the size of the path segments). Path-segment registrations are sent as
packets addressed to the path service (see Section 15.2 on Page 355). The format
of the path registration message is presented in Section 15.4. Up-segments are
registered at a local AS’s path server, while down-segments are registered at a
core path server from a local ISD. We note that the down-segment registration
process is more complex since the core path server, which received a down-
segment, has to replicate the segment among all core ASes within its ISD. Due

126

7.1 Path Exploration and Registration

to such replication, all core ASes can serve down-segments for all non-core
ASes from the same ISD.

7.1.3 Inter-ISD Beaconing and Path-Segment Registration

The inter-ISD (or core) beaconing process is conducted only by core ASes in
order to create core-segments, which enable two core ASes to communicate.
The structure of inter-ISD beacons is identical to the structure of intra-ISD PCBs
(see Section 7.1.1). However, the process of core beaconing differs slightly from
the intra-ISD process. The main difference is that every core AS periodically
initiates core beaconing by sending beacons to all its neighbor core ASes (not
to its customers, as in the intra-ISD case). In inter-ISD beaconing the core
PCB from each core AS is flooded to all other core ASes (forming a complete
flooding tree), whereas in intra-ISD beaconing only PCBs originating from
core ASes are disseminated along provider-customer links (forming a more
limited distribution tree compared to core PCBs). For inter-ISD beaconing, our
implementation sets the same default parameters as in the intra-ISD case (i.e.,
propagation and dissemination periods are 5 seconds long, and `“ k “ 5).

Initiating Core Beaconing

Inter-ISD PCBs (also referred to as core PCBs) are disseminated from every
core AS to all other core ASes. Each core AS, through its beacon servers:
(a) initiates the path exploration process by creating an initial core PCB and
propagates it to all neighbor core ASes, and (b) propagates PCBs originated
by other core ASes. The process is repeated in every propagation period (the
period can be adjusted by every core AS, as before).

Among other information, the beacon server adds the following information
to a core PCB: the current timestamp, the version of the used TRC and certificate,
and the first AS entry, which contains only a single hop entry (peer entries are
not added). This hop entry contains the ISD and AS identifiers of the current and
the next ASes, and carries the hop field in the format presented in Equation 7.11.
Similarly to the intra-ISD exploration process, the hop field denotes a beginning
(or an end) of a path and authenticates a forwarding decision for every packet
that

• comes from the interface EgIF and terminates inside the AS, or
• originates from the AS and exits through the interface EgIF, or
• at this AS, switches to another path (which has to begin at this AS as

well).
Finally, the beacon server signs the PCB and sends it to the border router,

which processes it similarly to the intra-ISD case (i.e., the PCB is finally passed
to a neighbor beacon server). Note that the neighboring AS can be in the same

127

7 Control Plane

or in a different ISD, and consequently, the ISD identifier included in the info
field describes only the ISD of the PCB originator.

Beaconing by Core ASes

After an ingress border router passes a core PCB to a beacon server, the beacon
server verifies the PCB, and similarly to the intra-ISD case, the beacon servers
exchange TRC(s) and/or certificate(s) (if the TRC and/or certificate version has
changed). As beaconing in the cores is based on flooding, it is necessary to
avoid loops during path creation. A core beacon server avoids loops at both the
AS and ISD levels as follows:

• it discards PCBs that include an AS entry created by itself,
• it discards PCBs that re-enter an already visited ISD.

Finally, the beacon server adds the PCB to its local database, as beacon servers
collect PCBs to all seen ASes.

In every propagation period, the beacon server selects the ` best PCBs for
every core AS from its database. PCBs are selected per unique core AS, as the
goal of core beaconing is to have path(s) that connect every pair of core ASes.
The selection criteria are set according to local AS policies, which are presented
in detail in the next section. For every such selected PCB and for every interface
that connects to a core AS, the beacon server creates a new PCB by adding a
new AS entry. The AS entry includes only a single hop field that authenticates
forwarding between ingress and egress interfaces (see Equation 7.7). The set
of such created PCBs is sent to the border router corresponding to the egress
interface and finally to the neighbor core AS.

Core Path-Segment Registration

The core beaconing process creates core AS path(s) to other core ASes. These
paths have to be registered at local ASes’ path servers so that local and remote
end hosts can obtain and use them. In contrast to the intra-ISD registration
procedure, there is no need to register core-segments with other ASes (as each
core AS will receive PCBs originated by every other core AS).

In every registration period, a core beacon server
1. selects the k best PCBs towards each core AS observed so far, from the

cached core PCBs;
2. removes all unprotected fields from the beacon extensions;
3. adds a new AS entry to every selected PCB with a hop field of the

following format:

HF “ x FlagsHF } ExpTime } InIF } ‚ } σ y (7.14)

128

7.1 Path Exploration and Registration

(only the ingress interface identifier is specified (i.e., EgIF is set to ‚)
since the core path ends here);

4. signs every selected PCB and appends the computed signature. Such
modified PCBs are called core-segments;

5. registers the resultant core-segments with a local AS’s path server.

7.1.4 Beacon and Path-Segment Selection

As an AS receives a series of intra-ISD or core PCBs, it must select the PCBs
it will use to continue beaconing and to register path segments at path servers.
A non-core AS must select (a) a subset of PCBs to propagate downstream, (b)
up-segments to register at a local AS path server, (c) down-segments to register
at a core path server. A core AS must select (a) a subset of PCBs to propagate
to neighbor core ASes, and (b) core-segments to register at a local AS path
server. Core ASes do not register core-segments at remote AS path servers, as
due to core beaconing (see Section 7.1.3) all core ASes find a set of paths to all
other core ASes.

The selection process is based on path properties (e.g., length, disjointness
across different paths) as well as PCB properties (e.g., age, last transmission
time). In this section, we describe the process by which an AS evaluates and
selects PCBs. The beacon server of an AS maintains a data structure of received
PCBs under consideration for downstream propagation and registration at path
servers. Each AS can specify how PCBs are evaluated or eliminated from
consideration through a local policy.

Although the policy-based selection process presented here enables a variety
of path choices, ASes may need to express more sophisticated routing policies.
In Section 10.9 we discuss how SCION can support routing policies fitting
today’s Internet business models.

Beacon Store

Each time a beacon server receives a PCB, it chooses whether or not the PCB
will be stored as a candidate (i.e., under consideration for propagation and
registration). To manage the set of candidate PCBs, the beacon server maintains
a database of PCBs called the beacon store. The beacon store has a fixed
capacity n and supports the following operations:

• add: add a new PCB to the beacon store if it complies with the selection
policy. If the beacon store already contains n PCBs, remove the least
desirable PCB.

• remove: remove a PCB from the beacon store.
• select: select a number (specified as a parameter) of PCBs.

129

7 Control Plane

ISD

ISD Core

ISD

ISD Core

ISD

ISD Core

(a) Path Length (b) Peering Links (c) Disjointness

D

F

A

B

H

J

C

E

G

I

D
E

A

B

H
I

G
F

C

J
K

L

D

A

B

G

F

E

C

Figure 7.2: Example graphs to illustrate beacon and path-segment selection
based on different path properties.

Through the above operations, the beacon store is thus implicitly responsible
for applying the AS’s selection policy (described below). In addition to storing
PCBs, the beacon store also stores metadata for each PCB, such as when the
PCB arrived at the beacon store and when it was most recently forwarded to a
downstream AS.

Selection Properties

We propose a set of metrics that represent a range of desirable properties in a
path or PCB:

• Path length: The first property we consider is path length. In this case,
path length is defined as the number of hops from the originator AS to
the local AS. This can give an indication of the path’s latency (although
there are many other factors affecting latency).
In Figure 7.2a, we can see that AS G will receive the paths AG, BDG,
and CEFG, which have lengths of 1, 2, and 3 hops, respectively. Based
purely on length, G would prefer AG first, followed by BDG and CEFG.

• Peering ASes: We also consider peering ASes, defined as the number of
peering ASes from all non-core ASes on the PCB. The number of peering
ASes is important because a greater number of peering ASes on a PCB
increases the likelihood of finding a shortcut using that segment.
In Figure 7.2b, AS L receives seven distinct PCBs, all of which start at B
and are three hops long. However, the number of peering ASes in these
paths range from none (in BGKL) to four (in BEIL).

130

7.1 Path Exploration and Registration

• Disjointness: Unlike other properties, the disjointness of candidate PCBs
(illustrated in Figure 7.2c) is calculated relative to other PCBs and thus
depends on PCBs that have been previously sent. We use the two fol-
lowing definitions of disjointness: paths can be vertex-disjoint (i.e., they
have no common upstream/core AS for the AS the beacon store is in) or
edge-disjoint (i.e., they do not share any AS-to-AS link). Both definitions
are useful in this context: vertex-disjointness allows path diversity in the
event that an AS becomes unresponsive, and edge-disjointness provides
resilience in case of link failure.

• Last reception: The last reception of a PCB is defined as the time that
has elapsed since the PCB arrived at the AS’s beacon store. This metric
is important because a short elapsed time indicates that upstream ASes
found the PCB desirable and fewer catastrophic events (e.g., a failing
link) can have affected the segment since it was propagated. Thus, older
PCBs can be considered as more stable, thus more preferable. Because
upstream ASes may propagate the same PCB multiple times, a beacon
store may receive a PCB from its upstream AS that it has already received
before. In this case, the beacon store simply updates the PCB’s arrival
time. On the other hand, new paths (never seen before) can also be
desirable and should be propagated quickly to announce new paths.

• Last transmission: The time that has elapsed since the AS’s beacon
server last propagated the PCB must be taken into consideration. If
the PCB has never been propagated downstream, then the beacon store
assigns the PCB’s last transmission a value of8. The last transmission of
a path is important because it allows the beacon store to take into account
paths that have not been propagated in a while and thus can improve the
diversity of beacons transmitted downstream over time.

• Feature support: Beacon selection can be extended to support richer
criteria, such as bandwidth reservations in SIBRA (see Chapter 11),
consistent support for a certain SCION extension on a path, or support
for a specific cryptographic algorithm, for instance.

Selection Policy

Each AS has a selection policy, which governs the storage and selection of
PCBs at all beacon servers in the AS. In particular, a selection policy specifies
the following:

• the maximum number n of candidate PCBs to store,
• the number k of up-path segments to register at a local path server each

registration period,
• the number k of down-path segments to register at a core path server

(specified only by non-core ASes) each registration period,

131

7 Control Plane

• the number ` of PCBs to propagate (downstream or to core ASes) each
propagation period,

• a list of blacklisted ASes that must not appear in any PCB sent down-
stream or registered,

• a set of minimum and maximum allowable values for properties, and
• a set of weights representing the relative importance of the previously

mentioned properties in evaluating and selecting PCBs.
Beacon policies are local to the AS and it might be in the commercial interest
of the AS to keep them private.

Filtering Beacons

When the beacon server receives a PCB, the beacon store first checks the
path against a series of filters defined by a selection policy. These filters
check whether any ASes in the segment are blacklisted, and whether the path
properties fall between the minimum and maximum allowable values specified
in the selection policy. The latter type of filtering allows paths with certain
undesirable properties, such as being longer than a threshold number of hops,
to be ignored as a candidate PCB.

Selecting PCBs and Path Segments

The beacon store computes the overall quality of a PCB as a weighted sum,
using the weights specified in the selection policy. Once it has computed
the quality of all candidate PCBs, the beacon server selects the top-ranked
PCBs. Time-based path properties, such as age and transmission time, must
be recomputed when the beacon store selects PCBs. Disjointness is based on
previous operations and must also be computed when PCBs are selected (i.e.,
every propagation or registration period).

7.2 Path Lookup

Path lookup is a fundamental building block of SCION’s path management
architecture. It enables end hosts to obtain path segments found during path
exploration. End hosts can then construct end-to-end paths from a set of possible
path segments returned by the path lookup process.

7.2.1 Requirements and Design Goals

We considered the following requirements and design goals that led to the
design of SCION’s path lookup infrastructure.

132

7.2 Path Lookup

Low Latency

In the absence of a cached path at end hosts, a path lookup needs to be performed
before a packet can be sent to a new destination. It is therefore performance-
critical that a path lookup can be performed as fast as possible.

Effective caching is critical for the performance and scalability of path lookup,
as it can decrease the latency of path lookups. To minimize the number of path
lookups, path servers and end hosts should also cache paths for a short period
of time to exploit the temporal locality of network destinations.

Scalability

Path lookup not only has to scale with respect to the number of users, but also
to an increasing number of paths available in an ever-expanding network such
as the Internet.

Caching can help with scalability with respect to an increasing number of
requests. To ensure scalability with respect to the number of paths, the path
lookup infrastructure can only contain a subset of all available Internet paths. It
is also crucial that the amount of state needed to store and serve paths be as low
as possible.

Availability

If the path lookup infrastructure experiences outages, end hosts might be unable
to look up new paths, thus crippling the entire communication infrastructure.
The path lookup infrastructure should therefore be distributed and replicated
to guarantee high availability even when single parts of the system fail or are
under attack, e.g., during a DDoS attack.

Cache Consistency

We argued that the use of caching is critical for path lookup with respect
to performance, scalability, and availability. However, caching introduces
consistency problems. If a cache delivers stale paths, then the performance of
the path lookup and all upper layers are negatively impacted; the severity of
this problem increases the more distributed the path lookup infrastructure is.

Security

In terms of security, the following properties are critical for the path lookup
infrastructure to function properly in the presence of an attacker.

First, end hosts should be able to verify the authenticity of paths they receive
from path lookup, i.e., that path segments were registered by the true destination

133

7 Control Plane

and have not been altered since registration. This prevents an attacker from
tricking an end host into using a fake path (similar to cache-poisoning attacks
in DNS [177]).

Second, a path should only be removed from the path lookup infrastructure
with proper authorization (apart from expiration). Otherwise, an attacker could
disconnect an AS from the Internet by repeatedly revoking all paths to that AS.

Third, not all paths should be public. While path servers facilitate the retrieval
of paths, it should be possible to distribute paths out of band directly to potential
senders. SCION supports non-registered (or hidden) paths, which can serve as
an important ingredient in DDoS attack defense.

7.2.2 Path Lookup Process

End-to-end communication is enabled by a combination of up to three path
segments that form an end-to-end path. The goal of the path lookup process is
to provide a source end host with diverse path segments and at least one set of
connecting path segments, i.e., path segments that can be combined towards
the destination by simply joining their corresponding endpoints. Depending on
the location of source and destination end hosts, the path lookup process differs
slightly.

Source and Destination from Non-core ASes

A source end host initiates a path lookup by issuing a path request, containing
the destination ISD and AS identifiers, to a local path server. The local path
server then forwards the request to one of the core path servers, using an
up-segment that was previously registered by the beacon server (if the lookup
succeeds, the local path server will append this up-segment to the corresponding
response). At this point there are two possible scenarios:

1. The destination is in the same ISD as the source. In this case the core
path server knows the down-segments to reach the destination and returns
up to k segments to the local path server.

2. The destination is in a different ISD than the source. In this case, the
core path server requests the down-segments from a core path server in
the destination ISD (using a core-segment), before returning them to the
local path server.

In both cases, the first core path server (the one requested by the local path
server) returns up to k core-segments, which connect its AS and the ASes that
originated the down-segments. If a down-segment originates in the core path
server’s AS, then the core-segment is not required as the up- and down-segments
directly connect. However, it is guaranteed that if path lookup succeeds (i.e.,

134

7.2 Path Lookup

an end host receives a set of path segments), then there is at least one set of
connecting path segments; thus the end host is able to build a forwarding path.

The local path server then returns up to k up- and k down-segments (and
optionally up to k core-segments — if required) to the source. The up-segment
used for querying the core path server is included in the response. If the source
wishes to communicate through the core and the received core-segments are
unsatisfactory, then additional core-segments may be fetched (by asking another
core AS). Depending on the received segments, there are different ways a source
can combine them to create an end-to-end path. We describe these options in
detail in Section 8.2.

End hosts and path servers accept path segments only when they are verified.
This verification may require contacting the server that sent the given path. The
details of this process are described in Section 4.2.3.

Example. An example of the entire path lookup process is depicted in Fig-
ure 7.3. In this example, we assume that the desired paths are not yet cached
in the path servers. First, an end host from AS p1,10q (ISD 1, AS number 10)
that wishes to contact a host from AS p2,23q contacts its own local path server,
requesting path segments connecting source AS p1,10q with the destination
AS p2,23q. The local path server, using an up-segment, contacts a core path
server inside the local ISD (i.e., AS p1,1q), requesting path segments from the
core path server’s AS p1,1q to the destination AS p2,23q. (Note that the local
path server postpones this request if it has no up-segment.) The core path server
of p1,1q takes any core-segment to an AS from the destination ISD 2, and
queries this AS’s path server. (This request is postponed until a core-segment is
available.) In our example, the path server in AS p2,2q is asked about down-
segments of the destination AS p2,23q. We emphasize that the down-segments
of AS p2,23q do not have to originate from AS p2,2q, they can originate from
any other core AS from ISD 2. As soon as the core path server from ISD 2 has
appropriate down-segments, up to k of them are returned to the core path server
in AS p1,1q, which verifies the path segments (it can query the origin core
path server for certificates or TRCs if locally cached information is missing or
outdated). Next, this core path server has to find up to k core-segments between
its AS p1,1q and ASes that originated the received down-segments. At least
one such core-segment has to be found, otherwise the path server waits for it.
Then, down-segments with the corresponding core-segments are returned to the
local path server of AS p1,10q (which verifies the path segments as well). The
local path server adds up-segments to the set of obtained paths, adds additional
core-segments (if they are cached) connecting up- and down-segments, and
sends the entire response to the end host. The up-segment to the core AS p1,1q
has to be within this response. Finally, the end host verifies the received path
segments.

135

7 Control Plane

End host

(1, 10, 1.2.3.4)

Local path server

(1, 10, 1.1.1.3)

Core path server

(1, 1, 1.1.1.1)

Core path server

(2, 2, 2.2.2.1)

Path req.: (1, 10) → (2, 23)

Wait for up-segment

Path req.: (1, 1) → (2, 23)

Wait for core-segment

Path req.: ∗ → (2, 23)

Wait for (2, 23)’s down-seg.

Create (2, 23)’s path reply

Path(s)

TRC/cert req.

TRC/certVerify paths

Add core-segments to reply

Paths

TRC/cert req.

TRC/certVerify paths

Add up- and core-segments to reply

Paths

TRC/cert req.

TRC/certVerify paths

Figure 7.3: A path lookup example.

Source and/or Destination from Core AS(es)

When source and destination end hosts reside in the core, the queried path server
returns up to k core-segments towards the destination. When the source is within
a core AS, while the destination is within a non-core AS, the source receives
up to k down-segments, and up to k core-segments between the source AS and
the originators of the down-segments (to guarantee that there exist connecting
path segments). Similarly, for a source in a non-core AS and the destination
within a core AS, the source is provided with sets of up to k up-segments, and
up to k core-segments between the requested core path server’s AS and the

136

7.2 Path Lookup

destination AS. As in the previous cases, received path segments are verified by
the receivers.

7.2.3 Caching

To reduce path lookup latency, path servers form a hierarchical caching in-
frastructure. Every path server internally maintains a cache of path segments
received during path lookup. There are three events that trigger the removal of
a path segment from a path server’s cache:

1. The cache fills up completely. Path servers use the least-frequently-used
replacement strategy to replace path segments if the cache completely
fills up.

2. A path segment expires. Each path segment contains an expiration time
(up to 24 hours) after which a path server evicts the path segment from
its local cache. The expiration time of a path segment is the minimum of
all hop-field expiration times contained in the path segment.

3. A path segment is explicitly revoked. Path revocation is covered in detail
in Section 7.3.

Using a least-frequently-used replacement strategy ensures that the most
frequently requested path segments are kept in a path server’s cache. This is
especially important for down-segments toward popular destinations or core-
segments frequently involved in transit. Similarly, end hosts also cache obtained
path segments.

7.2.4 Path-Segment Authenticity

Path segments are signed in the same way as beacons, i.e., by every AS on the
path. Each path server (and end host) can verify a path segment regardless of its
origin. By tying together path segments with information required for their veri-
fication (i.e., certificates and TRCs), we decouple verification of a path segment
from the path server that delivers the segment during path lookup. Such an
approach provides availability of the authenticity verification, as path segments
can be freely distributed throughout the entire path lookup infrastructure. The
details of the authentication process are described in Section 4.2.3.

7.2.5 Non-registered Path Segments

Public services typically want their servers to be reachable by as many hosts
as possible. In these cases, maintaining an up-to-date set of path segments
for that service’s AS achieves this goal. However, certain use cases require
services to be accessed only by authorized senders. While authorization can
be achieved at the application layer, denial-of-service attacks may exhaust

137

7 Control Plane

resources, preventing the data from reaching the authorization application or
overwhelming the application so that it cannot process all requests. In these
cases, it would be beneficial to make the path segment available only to specific
authorized senders, and not allow attackers or unauthorized parties to even
establish a connection to the service.

Non-registered (or hidden) path segments fulfill this need. Instead of regis-
tering the path segment to a path server, the path segment is communicated out
of band (e.g., in person, via secure messaging, or posted encrypted to a public
site) to authorized senders. Consequently, only authorized senders may then
begin to use that path segment for communication.

7.3 Secure Path Revocation

In this section, we describe the SCION path revocation mechanism, which
addresses the problem of removing faulty or undesired path segments from the
path infrastructure. In SCION, path segments must be revoked, i.e., removed
from path servers, in two cases:

1. due to changes in routing policies, i.e., proactively;
2. due to a link failure on the path, i.e., reactively.
The first case is usually not time-critical and can be addressed through

expiration timestamps on path segments in conjunction with ASes ceasing to
advertise these paths. An AS can always unregister its previously registered
path segments in the core path server, which prevents end hosts in ASes that
do not have a cached copy of the path from using it. However, cached copies
will still be usable for as long as the path is valid. We assume that an AS is
committed to a path segment it registers for the entirety of its lifetime.

For reactively revoking a path segment due to a link failure on the path, time
plays a critical role; the faster a faulty path segment can be revoked, the fewer
sources will try to make use of the faulty path segment and the quicker the
system will converge to a state without stale (non-functioning) path segments.
Thus, a path revocation system needs to be tuned to rapidly and efficiently
remove faulty path segments.

Efficiency and scalability. To ensure scalability and also to prevent denial-
of-service (DoS) attacks by malicious entities in the network infrastructure, it is
critical to achieve low computational, storage, and bandwidth overhead. Thus,
a revocation must not require involved network elements to keep an excessive
amount of state or to generate a large number of additional messages within the
network.

138

7.3 Secure Path Revocation

Additionally, a revocation must be efficiently verifiable to prevent overwhelm-
ing verifiers through many (possibly forged) revocations. Finally, revocations
should be short, to minimize communication overhead.

Security. Path revocation is designed to remove a path segment from the
path infrastructure. Therefore, the system needs to prevent unauthorized or
malicious parties from revoking path segments. The system must thus ensure
that revocations are authentic, i.e., only the operator of an interface should be
able to revoke that interface.

Finally, it must be impossible to replay a recorded revocation with the effect
of removing a valid path segment (resistance against replay attacks).

7.3.1 Design

The main task of the revocation system is to rapidly remove cached copies
of path segments containing a failed link. The first design decision to make
is whether the revocation system should be active or passive. An example of
a passive design is the time-to-live (TTL)-based expiration of cached DNS
records [178]. While simple in design, passive revocation suffers from con-
flicting goals: on the one hand, path segments should be cached for as long as
possible, but on the other hand, failed path segments should be removed from
caches as quickly as possible. TTL-based revocation cannot simultaneously
achieve both goals.

With active revocation, long path segment retention can be achieved, while
also enabling fast removal of failed path segments. The main design decision
for active revocation lies in a suitable choice for revocation dissemination. In
the following, we describe the salient features of SCION’s path revocation
system.

Our design is motivated by the observation that a cached but unused path
segment does not have to be removed, because a faulty path segment will
be detected with usage, which can trigger removal. While using a stale path
segment leads to some overhead to detect the failure and recover from it,
immediately removing it from path servers is not critical. We can exploit this to
create a system with a loose consistency requirement, i.e., as long as a failed
path segment is not used, then there is no point in expending effort to revoke
it, but once a path segment is used, then the system revokes it, thus benefiting
others who may want to use it at a later point.

Another design aspect is the granularity of revocations. Our revocation
scheme works on the granularity of interfaces. To revoke a path segment, an
AS simply revokes the interface corresponding to the failed link, i.e., its end
of the link. This way, only a single revocation message is needed to revoke all
path segments that contain a failed interface.

139

7 Control Plane

ISD coreISD core

I

Data Flow

PS
PS

A

B

Core AS

Non-Core AS

Revocation Flow (end hosts)

Revocation Flow (path servers)

Failed Link

BS

Figure 7.4: Overview of the path revocation system.

Figure 7.4 depicts an overview of SCION’s revocation system:
• Whenever an AS needs to revoke an interface, the beacon server of

that AS informs each border router about the revoked interface; thus a
border router is always aware of all the revoked interfaces within its AS.
Additionally, the beacon server sends the revocation to a core path server
in its ISD (green arrows in the orange ISD).

• Whenever a packet with a forwarding path containing the interface ID
of a revoked interface arrives at a border router, the border router issues
a SCION control message protocol (SCMP) packet containing the revo-
cation that is sent back to the sender along the reverse direction of the
forwarding path contained in the packet header (blue arrows).

• The ingress border router in the AS of the source forwards the SCMP
packet to the source, and additionally to the local path server. The local
path server verifies and processes the revocation, and forwards it to a core
path server in its ISD. That core path server then forwards the revocation
to all other core path servers in the ISD (green arrows in the yellow ISD).

• If the SCMP packet travels downstream (away from the ISD Core),
then border routers in that ISD downstream of the failed link send an
additional SCMP packet to the local beacon server (AS I and AS B). This
is to prevent beacon servers from disseminating beacons containing a
failed link.

• End hosts receiving a revocation can verify it and immediately switch to
(or request) an alternative path.

140

7.3 Secure Path Revocation

Algorithm 2 Initiate revocation at a beacon server
1: procedure ISSUEREVOCATION(IFx)
2: revMsgÐ BuildRevMsg(IFx)
3: for all router P BorderRouters do
4: SendTo(router, revMsg)
5: end for
6: SendTo(CPS, revMsg)
7: RegisterNewDownSegments(CPS)
8: SendTo(LPS, revMsg)
9: RegisterNewUpSegments(LPS)

10: end procedure

• To meet our security goal, we propose a lightweight and efficient authenti-
cation scheme that allows each AS to prove to anyone in the network that
it is the owner of the revoked interface and thus authorized to perform
the revocation. Replayability of revocations is limited to 10 seconds, the
lifetime of a revocation. (More details will be given in Section 7.3.3.)

• Due to the short lifetime of revocations, each network element can keep
a map of all processed revocations and thus it can easily drop duplicates.
Each entry in this map needs be kept for at most 10 seconds.

7.3.2 Processing of Revocations

Beacon Servers

The beacon server keeps track of the state of all interfaces within its AS through
periodic keep-alive messages sent between adjacent border routers. If a link or
an interface to a neighboring AS fails, the beacon server initiates the following
revocation process (Algorithm 2):

1. For a failed interface IFx, the beacon server creates a revocation message
by calling the build revocation message algorithm (Algorithm 5).

2. The beacon server then sends a status update to all border routers in the
AS, informing them about the status of the interface and installing the
revocation message to revoke the interface.

3. It then sends the revocation to the core path servers in its ISD together
with a new set of down-segments.

4. Finally, the beacon server sends the revocation together with a new set of
up-segments to the local path server.

A beacon server that receives a revocation for an upstream interface checks
whether any of its currently registered paths are affected, and if so, immediately
registers a new set of up/down-segments with the local and core path servers.

141

7 Control Plane

Algorithm 3 Process revocation at a border router
1: procedure SENDREVOCATION(pkt, IFx)
2: revMsgÐ GetRevMsg(IFx)
3: SCMPPacketÐ SCMPPacket(this.addr, pkt.src, ReversedPath(pkt))
4: SCMPPacket.payloadÐ revMsg
5: NormalForward(SCMPPacket)
6: end procedure

7: procedure FORWARDREVOCATION(rev)
8: NormalForward(rev)
9: if FromLocalAS(rev) or AlreadySeen(rev) then

10: return
11: end if
12: if ToLocalAS(rev) then
13: ForwardTo(LPS, rev)
14: end if
15: if rev.ISD == this.ISD and FromUpstream(rev) then
16: ForwardTo(BS, rev)
17: end if
18: AlreadySeen(rev)Ð True
19: end procedure

Border Routers

Border routers perform different functions with respect to revocation processing,
depending on their position on the path of the packet that triggers a revocation
message (Algorithm 3):

• If the current or next hop interface of the packet’s forwarding path is
revoked within the local AS, a border router sends an SCMP packet
containing the corresponding revocation back to the source host. To that
end, a border router reverses the path of the packet that triggered the
revocation message.

• An ingress border router in the AS of the source host forwards the SCMP
revocation packet to the source host, and also sends it to the local path
server.

• An ingress border router downstream of the failed link forwards the
SCMP revocation packet toward the destination and also sends it to the
local beacon server. This prevents beacon servers from disseminating
beacons containing failed links.

• If none of these conditions apply, a border router simply forwards a
revocation message along the path in its header.

142

7.3 Secure Path Revocation

Algorithm 4 Process revocation at a non-core path server
1: procedure PROCESSREVOCATION(rev)
2: if AlreadySeen(rev) then
3: return
4: end if
5: x, P, RTi´1 , RTi`1 Ð ExtractProof(rev)
6: for all segment P tseg P PathSegments |rev.IFx P segu do
7: revTokenÐ segmentrrev.IFxs.token
8: if Verify(x, P, RTi´1 , RTi`1 , revToken) then
9: Remove(segment)

10: end if
11: end for
12: if rev.src‰ BS and rev.ISD‰ sel f .ISD then
13: SendTo(CPS, rev)
14: end if
15: AlreadySeen(rev)Ð True
16: end procedure

Non-core Path Servers

Non-core path servers either receive revocations from the local beacon server or
from a border router if the path server is in the same AS as the source host that
triggered the SCMP revocation packet. The revocation message is processed as
follows (Algorithm 4):

1. The path server first checks whether it has already received this revocation
and if so, stops processing it.

2. The path server then verifies the revocation against the token included
in path segments that contain the revoked interface (using Algorithm 6),
to ensure that it was issued by the interface’s owner. If the verification
succeeds, the path server removes all path segments that contain the
revoked interface. More details on revocation authentication can be
found in Section 7.3.3.

3. Finally, the local path server forwards the revocation to a core path server
if the revocation message originated from a remote ISD.

Core Path Servers

Core path servers receive revocations either from a non-core path server down-
stream, from a border router if the path server is in the same AS as the source
host that triggered the SCMP revocation packet, or from another core path
server in the same ISD. In any case, core path servers process the revocation in
the same way as non-core path servers (Algorithm 4). Additionally, a core path
server also forwards the revocation to all other core path servers in the same

143

7 Control Plane

IF1 IF2

RT

(IF2, t2, n2,2)(IF1, t2, n1,2)

Figure 7.5: A hash tree for two interfaces with T “ rt1, t2, t3, t4s. Squares contain
the triples pIFx, ti,nx,iq. To revoke IF2 in epoch t2, an AS reveals
pIF2, t2,n2,2q (red square) along with the green nodes.

ISD, unless it received the revocation from another core path server in the same
ISD.

End Hosts

Much like the path servers, end hosts can perform the Verifypq procedure and
if it succeeds they remove all path segments containing the revoked interface
from their cache. Revocations received by an end host in response to a sent
packet immediately allow packet retransmission on a different path without
having to wait for a timeout.

7.3.3 Revocation Authentication

To efficiently authenticate revocations we designed an authentication mecha-
nism based on hash trees [174]. The idea is the following: given a time interval
T , divide T into m equal, smaller intervals t1, t2, ..., tm. Each AS constructs a
hash tree, whose leaves are of the form:

HpIFx } ti }nx,iq,
where IFx is the interface identifier, ti is a time interval of T , and nx,i is a secret
nonce. For each interface IFx of an AS, there are m such leaves, i.e., in total the
hash tree contains n ¨m leaves, where n denotes the total number of interfaces
of an AS. Such a tree is only valid within time interval T . Figure 7.5 shows a
graphical representation of such a tree.

With the authentic root RT distributed to verifiers (see below), an AS can
revoke an interface IFx for a given epoch ti by revealing x“ pIFx, ti,nx,iq together

144

7.3 Secure Path Revocation

RTi,Ti+1
RTi�1,Ti

Ti

RTi+1

Ti�1 Ti+1

RTiRTi�1

……

tij

Figure 7.6: Hash trees for a time interval Ti are connected by introducing a
new root node that connects two subsequent trees. To revoke IFx at
epoch t i

j P Ti, an AS reveals pIFx || t i
j ||ni

x, jq together with the labels
of the nodes of the hash tree rooted in RTi and the roots of the hash
trees for Ti´1 and Ti`1, RTi´1 resp. RTi`1 (red path).

with the hash values of the siblings of the nodes on the path from Hpxq to the
root RT (see Figure 7.5 and Algorithm 5, lines 4–11). Let P be this set of hash
values. Using x and P, a verifier can compute R1T (Algorithm 6, lines 5–12). To
verify a revocation, a verifier checks the freshness of the revocation by executing
VerifyEpoch (Algorithm 7) and then ensures R1T

?“ RT . An expired revocation
message must be ignored to prevent replays of old revocations. When verifying
the freshness of the revocation, a tolerance ε is added to account for imperfectly
synchronized clocks as well as the propagation time of revocations.

Connecting Hash Trees

A hash tree, as described above, is only valid for time interval T , but clearly,
revocation authentication needs to be possible over an arbitrary amount of time.
To achieve this property, we consider time as an infinite series of time intervals
Ti. To each Ti we associate a corresponding hash tree with root RTi . To achieve
continuity between the time ranges, we propose connecting two consecutive
trees with roots RTi , RTi`1 by making them the left and right subtree of a new
root node RTi,Ti`1 (see Figure 7.6).

With this enhancement, we can present our complete scheme. During bea-
coning, an AS adds RTi,Ti`1 (the revocation token) to the PCB, assuming the
path expires in Ti`1. Selecting T to be at least as long as the longest lifetime of
a PCB, then in epoch t i

j P Ti, there exist only PCBs containing either RTi´1,Ti or
RTi,Ti`1 . Thus, to revoke an interface IFx at t i

j P Ti, the AS reveals pIFx || t i
j ||ni

x, jq
together with the hash values of the nodes of the hash tree rooted in RTi and the
roots of the hash trees for Ti´1 and Ti`1, i.e., RTi´1 and RTi`1 .

145

7 Control Plane

Algorithm 5 Building a revocation message.
1: procedure BUILDREVMSG(IFx, RTi´1 , RTi`1)
2: xÐ pIFx } t i

j }ni
IFx, jq

3: mÐH(x)
4: for l Ð 1..heightpTiq do
5: PÐ P } sibling(m)
6: if IsLeftSibling(m) then
7: mÐH(m } sibling(m))
8: else
9: mÐH(sibling(m) } m)

10: end if
11: end for
12: return (x, P, RTi´1 , RTi`1)
13: end procedure

Verification proceeds similarly. First, a verifier checks the freshness of the
revocation. Then, the verifier computes R1Ti

and checks whether:

HpRTi´1 ||R1Ti
q ?“ RTi´1,Ti or

HpR1Ti
||RTi`1q ?“ RTi,Ti`1 .

Note that an AS, at any point t i
j P Ti, only needs to store the hash trees with

roots RTi and RTi`1 . From the previous hash tree, only the root RTi´1 needs to be
stored.

To provide a conservative estimate of the size of a revocation message, we
set T “ 24 h and each epoch t i

j “ 10 s. Thus there are m“ 24 ¨60 ¨6“ 8,640
epochs in T . Additionally, we set n “ 10,000, which is considerably more
than the maximum number of links to neighboring ASes for any AS in today’s
Internet [77]. In total, the entire hash tree contains about 86 million leaves and
thus has a height of 28, i.e., a revocation message has to include an additional
28 hash values to enable verification.

7.4 Failure Resilience and Service Discovery

The path infrastructure is a fundamental piece of the SCION architecture whose
availability is crucial for basic communication. In this section, we describe how
we achieve high availability for services that are part of the path infrastructure.
We note that ASes can use other techniques than the ones we describe here, but
the default strategies below are sufficient to provide high availability.

The control-plane infrastructure is based on a consistency service that pro-
vides the following primitives:

• a distributed database that allows entities connected to the service to
share information,

146

7.4 Failure Resilience and Service Discovery

Algorithm 6 Verifying a revocation message.
1: procedure VERIFY(x, P, RTi´1 , RTi`1 , y)
2: if not VerifyEpoch(x) then
3: return False
4: end if
5: R1Ti

ÐHpxq
6: for p in P do
7: if IsleftSibling(p) then
8: R1Ti

ÐHpp}R1Ti
q

9: else
10: R1Ti

ÐHpR1Ti
} pq

11: end if
12: end for
13: if HpRTi´1 }R1Ti

q == y or HpR1Ti
}RTi`1q == y then

14: return True
15: end if
16: return False
17: end procedure

Algorithm 7 Verifying an epoch.
1: procedure VERIFYEPOCH(x)
2: eÐCurrentEpoch()
3: if e == x.t i

j or
4: (e == x.t i

j´1 and TimeSinceEpoch() ă ε) then
5: return True
6: end if
7: return False
8: end procedure

• a leader election to elect an entity that acts as a master, and
• a group membership primitive to discover which instances are currently

alive.
In the current SCION implementation, Apache ZooKeeper [11] provides the
above primitives, though any software providing the three primitives listed
above can be used to implement the consistency service.

7.4.1 Beacon Service

The path exploration process within an AS relies on the availability of a beacon
server. In order to prevent a beacon server being a single point of failure, the
AS can run multiple, coordinated beacon server instances.

All beacon server instances in an AS connect to the consistency service and
appear as group members. An instance that gets disconnected from the service
for any reason will no longer appear as a group member. Upon joining, each

147

7 Control Plane

instance tries to become a leader, which makes the instance a master beacon
server until the leader terminates (e.g., due to failure or shutdown). When the
leader terminates a new election process takes place.

When a border router receives a new PCB, the router finds a running beacon
server instance (as described in Section 7.4.7) and forwards the PCB to that
instance. The beacon server instance can then share the PCB with the other
instances by writing the PCB into a specified location of the distributed database.
All beacon server instances watch this location and copy any new PCBs into
their caches. Every new beacon server instance populates its cache with PCBs
from the distributed database.

Once per propagation and registration period, the master beacon server
initiates the beaconing and path-segment registration processes, respectively.
If the master beacon server fails, a new master is elected and the new master
starts the beaconing and path registration.

Although we assume that network partitions in an AS or failures of the
consistency service are unlikely, the beacon servers can also handle these
failures. If a beacon server instance is disconnected from the consistency service,
it will initiate the beaconing and the registration at a planned interval. While
this approach may cause several beacon server instances to simultaneously
propagate PCBs, it guarantees that the beaconing and path-segment registration
processes can continue even under catastrophic failures.

7.4.2 Path Service in Core ASes

We now describe how we achieve high availability for the path service in core
ASes. Similarly to beacon servers, we deploy multiple coordinated instances
of path servers that elect a master (via leader election) and share a distributed
database containing registered down- and core-segments. However, due to load,
the core AS path servers cannot replicate all registered path segments as beacon
servers do with PCBs. Despite this limitation, each core AS must be able to
respond to queries for down-segments. We thus propose a two-level replication
scheme to meet these requirements: non-master path servers cache registered
down-segments and replicate them only with a master path server (that caches
all seen down-segments).

Down-Segment Registration

When an AS registers a down-segment at a core AS with replicated path servers,
registration proceeds as follows:

1. A down-segment is sent to a running path server instance as determined
by the group membership protocol. The instance is selected randomly by
the last border router as described in Section 7.4.7.

2. The path server instance verifies and registers the down-segment.

148

7.4 Failure Resilience and Service Discovery

3. If the path server instance is not a master, it forwards the segment to the
master path server instance of that AS.

4. The path server instance forwards the path segment to all other ISD core
ASes. Each AS processes the segment in the same manner.

Each ISD core AS thus has a master path server instance that keeps all registered
segments, and a copy of the database is also distributed among the running path
server instances in the AS.

Down-Segment Request

A down-segment request is handled differently depending on the destination’s
location. Regardless of the destination’s location, a path server instance in an
AS is randomly selected as described in Section 7.4.7.

If the destination is within the local ISD then the request is handled as
follows:

• If a down-segment to the requested destination exists in the path server’s
local cache, the server responds with the segment.

• If no down-segment to the destination exists in the path server’s local
cache and the server is not the master instance, the path server instance
asks the master instance of the AS, which responds to the query. The
answer is cached by the non-master server and used to serve the initial
request.

If the requested destination is in a remote ISD, then the request is handled as
above, except the path server forwards the request to a path server in the remote
ISD rather than to its local master path server instance. The remote path server
then processes the requests using the above steps.

Core-Segment Registration and Request

Core-segments are only registered with path server instances within a core AS
and are not sent to other ASes. The core-segments are replicated among path
server instances based on their destination. In particular, if a core-segment’s
destination is an AS in the local ISD, then the segment is stored in the distributed
database where each path server instance within that core AS can access it. If a
core-segment’s destination is in a remote ISD, the core-segment is cached at
the path server and forwarded to the master path server instance of the core AS.

A core AS’s path server instance handles a path request for a core AS (and
thus for a core-segment) as follows:

• If a core-segment for the AS exists in the local cache, return it.
• If not, and the target AS is from the local ISD, wait for the appropriate

core-segments (timing out after a waiting period).

149

7 Control Plane

• If the target AS is within a remote ISD, query the local master path server
for a core-segment, timing out after a set waiting period.

Failure of a Core Master Path Server

When a core master path server fails, the following procedure is executed:
• A new master path server is elected from the group members (i.e., from

all active path servers within the AS).
• All non-master path servers from the AS send the following to the new

master:
– their locally cached down-segments (i.e., down-segments from the

local ISD), and
– their locally cached core-segments to ASes in remote ISDs.

For efficiency reasons, the number of replicated paths per destination AS
is limited. Note that the distributed database stores all core-segments that
originated within the local ISD, so there is no need to send those path segments
to the new master.

7.4.3 Path Service in Non-core ASes

In non-core ASes, path server instances join the consistency service and access
the distributed database, but do not participate in master election.

Up-segment registrations are handled by all path servers in a non-core AS
and are fully replicated through the distributed database. Since up-segments
are accessible to all path servers in a non-core AS, a path request can be
handled by any path server. By default, paths to remote ASes (core- and down-
segments) are only cached by path servers that have received them (i.e., there is
no replication of these path segments for scalability reasons).

If a path server is disconnected from the consistency service, it serves the
requests as usual, but for all new up-segments obtained, an attempt is made
to synchronize them via direct communication with all remaining path servers
(known from the discovery service — see details in Section 7.4.6).

7.4.4 Certificate Service

The certificate service in both core and non-core ASes has a similar architecture
for high availability to that of the path service in non-core ASes, in that the
instances do not participate in master election. New TRCs and certificates
are replicated across all instances via the distributed database, providing all
servers with the same view of TRCs and certificates. Thus each certificate
server instance can serve TRC and certificate requests independently.

150

7.4 Failure Resilience and Service Discovery

If a certificate server is disconnected from the consistency service, it serves
the requests as usual, but attempts to replicate new TRCs and certificates via
direct communication with other certificate servers.

7.4.5 Inactive Interfaces

PCBs (through their AS entries) should reflect an accurate state of the network
within an AS, and thus interfaces that are down should not be added to PCBs.
To achieve this accuracy, every AS implements an interface failure detection
mechanism. In a nutshell, every border router periodically sends a keep-alive
message with the respective interface identifier to its neighboring router, which
propagates this message to all the beacon servers in its AS. The interval between
these keep-alive messages is known in advance, allowing an AS to detect that it
has missed a keep-alive message. After a threshold number of missed messages,
a master beacon server can consider the interface inactive; such interfaces
will no longer be added to new PCBs. An AS can also revoke an inactive
interface from all paths that contain information on the interface, as described
in Section 7.3.

7.4.6 Service Discovery

Both infrastructure elements and end hosts need to be able to find instances of
services they require for their operation. To facilitate this, a SCION AS runs
a discovery service. The discovery service gathers information from several
sources and exposes it in a standard format in a standardized set of URLs
(presented in Section 16.3 on Page 374).

The discovery service exports two views of the information: a full view
intended for infrastructure servers and routers, and a reduced view for end hosts.
The AS can make a policy decision on which part of the infrastructure is visible
in the reduced view, e.g., the entries for beacon servers may be excluded.

The main source of information for the discovery service is the consistency
service employed by the AS. The discovery service connects to the consistency
service and reads the membership information created by the group membership
primitive. In this way, the discovery service obtains the list of instances of a
given service — IP addresses and ports — and updates the exported information
accordingly. If the consistency service detects that a server has failed, it is
removed from the corresponding group. Since this change is visible to the
discovery service, it can then update the dynamic view it exports.

Additional information, such as the addresses and ports of border routers
and the MTUs of links, is configured statically for the discovery service, since
this information will rarely change and is typically gathered from additional
configuration files.

151

7 Control Plane

Finally, the discovery service augments all the exported records with a
timestamp of the last update. This timestamp can vary between services, but not
service instances. That is, there is one timestamp for all listed certificate servers,
another for all path servers and so on. The discovery service also exports a TTL
for the information it provides.

As a fallback, the discovery service exports static versions of both the full
and reduced views. This information is exported on a different path of the URL,
so clients have discretion in when to switch between the dynamic and static
views. The static view will typically have a longer TTL than the dynamically
generated view.

All views (static or dynamic, full or reduced) are signed by the discovery
service with the AS’s private key (the same key that is used for signing control-
plane messages). The minimal information that end hosts have to be provided
with is an address of a discovery server.

If an end host discovers that for a given service there are no instances listed
in the dynamic view, it can choose to use the content of the static view. If both
are empty, it can either fall back to a copy it has cached earlier, or use a static
configuration that was provided by other means. It can also choose to switch to
a different discovery service instance it knows about. Note that the information
provided by a discovery service will typically include all the discovery service
instances an AS wants to be used by end hosts or infrastructure elements.

If a discovery service instance has stale information (i.e., the TTL has passed
with no updates), it must still export this stale information. The decision what
to do with stale information is entirely up to the client.

7.4.7 Service Instance Selection

In order to facilitate control-plane anycast communication, SCION introduces a
dedicated service-addressing scheme. For instance, a beacon server that wishes
to register segments with a remote AS’s path service does not have to know the
actual address of a remote path server. Instead, the SCION service address of
the path service suffices, so that the SCION border router in the remote AS can
select an alive instance of the service to deliver the packet to.

To implement this primitive, all border routers, through the discovery service,
keep lists of alive instances for all supported services within their ASes. These
lists are frequently updated by the discovery service. When a border router
detects a packet addressed to a supported service, an instance of the service is
selected pseudo-randomly, and the packet is sent to the instance. To support
connectionless protocols, the selection process has to be deterministic, such
that two consecutive packets sent from the same application to the same service
are delivered to the same instance of that service.3

3In the case of TCP connections, only the first packet (i.e., SYN) is addressed to a given service.

152

7.5 AS-Level Anycast Service

7.5 AS-Level Anycast Service

SCION deploys anycast as a standard communication model for control-plane
requests. In essence, the service anycast system provides a service-oriented
communication infrastructure, enabling a request to be routed to the nearest
server. Due to the hierarchical nature of caching infrastructures, service lookups
should progress through subsequent servers at increasing levels in the hierarchy.
SCION intrinsically supports this primitive by embedding an up-segment in
the anycast request, further enabling the requester to specify which of the
ASes on the path to the core should invoke the anycast primitive to establish
whether an internal service can answer the request. This flexibility endows
the SCION service infrastructure with powerful primitives to implement a
variety of services, without introducing dedicated service-oriented stacks and
layers [186, 256]. In this section, we describe this infrastructure in more detail.

By default, all control-plane requests are sent within a requested AS as
anycast packets through a SCION service destination address. Within an AS,
server instances of a given service are discovered and tracked by the consistency
service, catalogued by the discovery service, and exported to all SCION border
routers through a server list (see the previous section). Moreover, SCION
introduces a separate anycast mechanism that works at the AS level. It allows
an anycast request to a service’s server to be sent to any intermediate AS on a
path to the ISD core.

Figure 7.7 presents several examples of SCION anycast requests. Each
service that is accessible via anycast has a dedicated anycast address that
is globally registered via an organization like IANA. Additionally, service
discovery (or anycast routing) has to be implemented within an AS (as described
in Section 7.4.7).

Case 1 in Figure 7.7 is the standard request to a server in the core (e.g., a path
request). The requester, using an up-segment to the ISD core, sends the request,
which traverses the ASes toward the core. The last border router on the path
sends an anycast packet to a pseudo-randomly selected server that implements
the service. The server responds to the requester using the reversed path from
the request packet.

For some services it is preferred (mainly for efficiency reasons) to send a re-
quest to servers within intermediate ASes instead of contacting ISD core servers,
to benefit from hierarchical caching. To satisfy this requirement, SCION intro-
duces service anycast that can be targeted to specific intermediate ASes. The
mechanism is implemented by a dedicated extension (see Page 354) and can
be enabled by an end host that wishes to request intermediate servers. The end
host simply marks a hop field that corresponds to a requested (intermediate) AS
as an anycast hop field. The bit informs the border router of the selected AS
that this packet should be forwarded to the service’s server within the AS.

153

7 Control Plane

1)

AS A
(core)

AS C

AS B

AS D

2a)

AS A
(core)

AS C

AS B

AS D

2b)

AS A
(core)

AS C

AS B

AS D

path: INF HFD HFC HFB HFA path: INF HFD HFC HFB HFA path: INF HFD HFC HFB HFA

ANYCAST ANYCAST

Figure 7.7: Examples of service anycast, where solid lines indicate a request
and dashed lines indicate a response. Case 1 shows a request to
a server in the ISD core. Cases 2a and 2b demonstrate a request
where either a server inside AS B, or a server in the ISD core is
requested to respond, respectively. In Case 2a, the server in AS
B responds directly. In Case 2b, the server in AS B forwards the
request to the server in the core. The path header diagram indicates
the HFs that are marked as anycast; in this example only the HF
corresponding to AS B is set as anycast in Cases 2a and 2b.

After the packet is received by the server, it can handle the request in several
ways. The processing logic depends on the contacted service, but we distinguish
the cases where the intermediate contacted service’s server

• can serve the request, and respond to the requester reversing the path
(Case 2a in Figure 7.7);

• cannot serve the request, and passes the request upstream sending it to
the next border router (Case 2b in Figure 7.7);

• can serve the request partially, and respond to the request in the packet
payload, but passes the request upstream (Case 2b in Figure 7.7).

Only the hop field that is processed by the ingress router of the AS that
should handle the anycast is marked as anycast.

The SCION AS-level anycast service enables design and implementation of
services that leverage a hierarchical caching infrastructure to minimize latency
(e.g., content distribution), or services that need to perform an action by every
AS on the path (e.g., on-path key agreement). Additionally, through the beacon
extension mechanism ASes can announce which services they support.

154

7.6 SCION Control Message Protocol (SCMP)

7.6 SCION Control Message Protocol (SCMP)

The SCION Control Message Protocol (SCMP) is analogous to ICMP in the
current Internet and provides the following functionalities:

• Network diagnostic: allows debugging tools such as the SCION equiva-
lents of ping or traceroute to be built.

• Error messages: signal problems with packet processing or inform end
hosts about network-layer problems.

The SCMP protocol is the first instance of a secure control message protocol
in a network infrastructure we are aware of. The main challenges include
scalable Internet-wide key distribution and highly efficient generation of au-
thentication information at line speed. In this section, we describe the design,
goals, and use cases of SCMP. Low-level details, such as packet headers, are
presented in Section 15.6.

7.6.1 Goals and Design

SCMP must be flexible as it is used for many purposes in various applications.
For instance, (a) some SCMP messages are processed by intermediate routers
on the path, while other messages are end-to-end, (b) there are various types
of SCMP messages (for various types of diagnostics or network errors), and
(c) the messages can influence different parts of the SCION stack (such as the
transport protocol or the beacon selection mechanism).

SCMP packets can carry either error messages or non-error messages. One
basic rule of SCMP is that an error packet should never generate another SCMP
packet (to prevent loops), thus border routers must be able to efficiently check
whether a packet is an SCMP error message. To this end, each SCMP packet
contains a mandatory and easily accessible SCMP extension header (see details
in Section 15.6.1 on Page 363). The extension header indicates whether the
packet should be processed by every router on the path (i.e., hop-by-hop flag),
and whether the packet contains an SCMP error message (i.e., error flag).

An SCMP packet has a simple SCMP layer-4 header that contains the length
of the carried SCMP message, describes its class and type, and contains the
message creation timestamp.

Finally, SCMP packets contain an SCMP payload, which carries the ac-
tual content of the message, necessary for interpreting a given message class
and type specified in the SCMP layer-4 header. In particular, it can contain
information about the SCION packet that triggered the SCMP message.

SCMP is implemented by network devices and end-host stacks. Usually,
SCMP packets are generated in response to a SCION data packet (that triggered
an SCMP message). As the SCMP packet has to be delivered back to the
initiator, it contains the reversed path and address from the initial packet. SCMP

155

7 Control Plane

packets also contain information to identify the source application (such as a
layer-4 header).

7.6.2 Supported Message Classes and Types

SCMP supports messages of the following generic classes:
• Forwarding: errors that can happen during packet forwarding or delivery.

This class contains message types that represent problems such as end-
host unreachability (e.g., unreachable ports), network issues (e.g., MTU
exceeded), or administrative decisions (e.g., destination denied).

• SCION common header: errors that can be found during basic packet
parsing; for instance, types such as wrong packet or header length, incor-
rect path pointers, or invalid address type.

• Path: errors related to the processing of the packet’s forwarding path.
This class can signal problems such as expired hop field, revoked inter-
face, invalid interface, or wrong MAC.

• Extension: errors that can happen while processing SCION packet ex-
tensions (e.g., unsupported extension or too many extensions).

• General: messages that do not fall into any other class; for instance,
types such as echo request/reply and traceroute.4

Besides generic messages, SCMP is also able to handle specific errors of SCION
extensions such as SIBRA (see Section 15.6.3 on Page 365).

7.6.3 Authentication

All SCMP packets are authenticated, thus it is infeasible to perform attacks
analogous to ICMP-based attacks on TCP/IP [99]. To the best of our knowledge,
SCMP is the first control message protocol to provide an authentication property.

SCION provides two means of SCMP authentication, using symmetric or
asymmetric cryptography. The methods can be used interchangeably, and they
both deploy a SCION packet security extension (see details in Section 15.1.4);
consequently, they protect the entire SCMP packet (not only its payload). The
symmetric authentication method uses AS-level keys to compute a message
authentication code (MAC) — while this approach offers high speed and scal-
ability, the disadvantage is that only the destination AS infrastructure or the
destination end host can verify the SCMP message. The asymmetric authenti-
cation mechanism is based on digital signatures, enabling any AS on the path
and end hosts to verify the SCMP message using the appropriate public key.

4SCION implements its own (more verbose) version of traceroute (note that in SCION the
forwarding topology is known by the source). Details can be found in Section 15.6.3 on
Page 365.

156

7.6 SCION Control Message Protocol (SCMP)

However, the disadvantage of the asymmetric approach is the much slower
speed for signature generation.

SCION border routers take an active role in creating SCMP packet authenti-
cators. If an SCMP packet is generated by a border router, the router decides
which authentication approach to use. For SCMP packets generated by end
hosts, the end host decides how the packet is protected, by setting a chosen
option for the SCION packet security extension for this packet. The extension
indicates an authentication method, and — if asymmetric authentication is used
— the first border router on the packet’s path authenticates the packet.

Symmetric Authentication

The first method of SCMP authentication leverages symmetric cryptography.
In this method, SCMP packets are authenticated by the router that generates
them, and verified by the final SCION border router on the path (i.e., the border
router of the SCMP message’s receiver). Thus, this method provides AS-level
authentication, i.e., the receiving AS can be sure that the packet was indeed
created by the sending AS.

To efficiently create authenticated SCMP messages, we use the DRKey
protocol (as described in Section 12.5 on Page 291). The DRKey protocol
lets each router derive a symmetric key for the receiving AS or end host on
the fly. This symmetric key will be used to compute a MAC of the SCMP
message. Upon receiving an authenticated SCMP message, the receiver AS
has most likely already cached the verification key from a previously verified
SCMP message (originated from the sending AS). If the key is not available, the
receiving AS contacts the AS that generated the SCMP message and engages in
a key exchange protocol to fetch the current MAC key.

AS A

A

Border router

Source

AS

AS

AS B

Destination

B

Data packet (from source to destination)

SCMP packet (from border router B to source)

AS C

Figure 7.8: An example of SCMP authentication using MACs.

157

7 Control Plane

Example. In Figure 7.8, the source host from AS A sends a data packet to the
destination in AS C, but forwarding fails (e.g., due to an expired hop field) at
the ingress interface of AS B’s border router BRB. The router creates an SCMP
message, which describes the problem and uses the source address and the path
from the original data packet to build an SCMP packet destined for the source.
When the packet is created, then BRB (a) derives a key for authenticating packets
destined for the source based on the key shared with AS A, (b) computes a
MAC over the packet and puts it into the packet, and (c) sends the SCMP packet
back to the source. If the source has a key shared with AS B, then the packet
is verified and (on success) delivered. If the key is not established, then the
certificate server is contacted and queried for the missing key. The certificate
server derives the requested key from a shared secret between AS A and AS B
and returns it to the source, which can then verify the SCMP packet.

The main advantage of this approach is that the authentication process is
extremely efficient. A router can efficiently derive a key for any AS and use it to
authenticate packets to this AS. Moreover, it does not need coordination within
an AS. If all routers within an AS share a secret SCMP key, each of them can
locally and efficiently re-create the SCMP key using the DRKey protocol for
any destination AS, without any additional communication and without storing
any per-AS state.

Asymmetric Authentication

The second form of authentication is based on digital signatures, which provides
a stronger security property than symmetric authentication — SCMP packets
are again authenticated by routers, but can be verified by any entity including
other on-path entities. However, even fast digital signature schemes are a
few orders of magnitude slower than symmetric primitives, and it would be
prohibitively inefficient to sign every SCMP packet created.

To remedy this problem, routers sign SCMP packets in batches. We use
Merkle hash trees (introduced in Section 4.4.1) to implement batch signing, as
this structure can be leveraged to efficiently prove that a leaf is part of the tree.

In this approach, every router has a queue of SCMP packets that need to be
authenticated using the asymmetric approach. The queue is limited by a fixed
size (e.g., it can store up to 4,096 packets) and is restricted by a time limit (e.g.,
the oldest packet in the queue can have been created at most 20 milliseconds
before). Specifically, when the size of the queue or its time limit is reached, the
router

1. builds the Merkle hash tree from the queued packets and signs the root of
the tree (using the same key used by beacon servers to authenticate PCBs
and path segments);

158

7.7 Time Synchronization

h12345678

h5678

h78

h8

P8

h7

P7

h56

h6

P6

h5

P5

h1234

h34

h4

P4

h3

P3

h12

h2

P2

h1

P1

Figure 7.9: Queue of the SCMP packets and the corresponding Merkle hash
tree.

2. creates a proof for each packet that belongs to the tree (see Figure 7.9,
where packet P4 is authenticated via values h3,h12,h5678, and the signed
root value h12345678);

3. extends each packet by its proof and sends all packets towards their
destination; and

4. clears the queue.
Although this scheme introduces higher overhead (proofs are longer than

MACs and the signing is less efficient than MAC creation) it has several advan-
tages. First, the packets can be verified by any entity, not only by the destination
AS or end host. Moreover, in this scheme, a source host does not need to
conduct any certificate or key lookup. The connection initiator that receives an
SCMP packet can immediately verify it, as it already has the required certificate
(the SCMP is sent via a forwarding path derived from the signed path segments).
If the certificate is missing, however, an end host can obtain it from its local
certificate server. Finally, the digital signature offers non-repudiation, a stronger
property than authentication offered by the MAC.

7.7 Time Synchronization

A standard assumption in security protocols is synchronized time. SCION
protocols also rely on this assumption. It is required that end hosts, servers,
and border routers are synchronized with at least second-level precision, al-
though some protocols may still work effectively when time is less precisely
synchronized.

To provide reliable time information, SCION proposes a time synchronization
framework as follows.

1. Each core AS runs a public time synchronization service that is accessible
to anyone inside its ISD.

159

7 Control Plane

2. The core time synchronization services are stratum-1, i.e., they synchro-
nize with a stratum-0 source.

3. A non-core AS may run a time synchronization service, synchronized
with at least a stratum-1 source time (e.g., with its core time synchroniza-
tion service).

4. The infrastructure (servers and routers) of each AS is synchronized with
a time synchronization service from a core AS of its ISD.

5. Finally, end hosts should be synchronized with a core (or, if possible,
with a local) time synchronization service.

The time synchronization service has its own service address. As the default
protocol we propose the use of the Roughtime protocol [101]. Roughtime is a
novel protocol that provides higher security than currently deployed time syn-
chronization protocols (such as NTP [175]). Every response from a Roughtime
time server is signed, and the protocol allows misbehavior on the part of time
servers to be cryptographically proven.

160

8 Data Plane

CHRISTOS PAPPAS, ADRIAN PERRIG, RAPHAEL M. REISCHUK,
STEPHEN SHIRLEY, PAWEL SZALACHOWSKI

In this chapter, we discuss the SCION data plane. The purpose of the data plane
is to forward packets containing a SCION header. In SCION, inter-domain
forwarding decisions are encoded as a sequence of hop fields (HFs), which
encode AS-level hops augmented with ingress and egress interfaces.

Two important aspects of the SCION data plane are HF integrity (to prevent
forgery or alteration of HFs) and efficiency (to enable high-speed processing).
SCION provides a data plane that, despite its secure operation, is more efficient
than the current Internet infrastructure in several aspects: processing time,
router complexity, scalability to large networks, and energy consumption. In
particular, our investigations suggest that the cryptographic verification of HF
information can be made faster and more power-efficient than the longest-prefix
matching by current routers. (The power efficiency is discussed in Chapter 14.)
The absence of inter-domain routing tables improves scalability. Finally, the
implementation of cryptographic functions is well understood today, and can
lead to simple router implementations, helping to reduce the complexity of
current routers.

In this chapter, we discuss, among other things, the format of hop fields,
how path segments are combined to create forwarding paths, and how routers
compute a forwarding decision.

Chapter Contents

8.1 Path Format . 162

8.2 Creation of Forwarding Paths 164

8.3 Efficient Path Construction . 174

161

8 Data Plane

8.1 Path Format

We start with the description of the data-plane path format used in SCION. A
path in this format is called a forwarding path and is placed directly into a
SCION header. It is considered by all SCION border routers on the path to
make forwarding decisions. To determine when to terminate the packet, border
routers check the destination address, which is also present in the SCION
header.

In contrast to the verbose control-plane path format (see Section 7.1), the
forwarding-path format includes minimal information that is needed to forward
packets. The rationale behind this design is that the path construction operation
is infrequent (compared to forwarding), and SCION’s control plane offers path
transparency so that end hosts obtain detailed path information when they
compose paths. However, only a fragment of this information is needed for
packet forwarding, which in turn is a very frequent operation and thus needs to
be highly efficient. Roughly speaking, a forwarding path is created once per
connection, and then it is processed by each border router on the path, for every
packet sent. For local communication (i.e., within an AS) a forwarding path is
not necessary (i.e., the path within the SCION header is empty).

A path in the data-plane format (i.e., a forwarding path) can be defined as a
concatenation of at most three lists of hop fields, which are extracted from an
up-segment, a core-segment, and a down-segment, respectively. Each list of hop
fields is optional, but hop fields have to be inserted into a packet in the correct
order (i.e., hop fields from a down-segment cannot precede hop fields from a
core- or up-segment, and core-segment hop fields cannot precede up-segment
hop fields). An example of how a forwarding path is constructed from path
segments is presented in Figure 8.1. The hop fields obtained from each path
segment are prepended with an info field corresponding to the path segment,
which includes the following information:

• a timestamp used for hop field freshness verification (each hop field of a
given path segment is verified against the corresponding timestamp);

• the identifier of the ISD that initiated the propagation of the path;
• the length of a given segment; and
• FlagsINF, which describes the type and the direction of the constructed

forwarding path with the following flags:
– UP: describes a forwarding path’s orientation (as forwarding paths

are bidirectional, the orientation information is required for correct
processing). When a packet travels in the direction of beacon
propagation, the flag is set to false; otherwise it is set to true.

– SHORTCUT: describes whether the constructed forwarding path
is of non-core AS shortcut type. This flag is set when up- and

162

8.1 Path Format

ISD core

BA C D E

source destination

core-segment
(core PCB)

down-segment
(intra-ISD PCB)

up-segment
(intra-ISD PCB)

INF

HF
…

AS C’s entry
…

HF
…

AS B’s entry
…

HF
…

AS A’s entry
…

C
O

N
TR

O
L

PL
AN

E
D

AT
A

PL
AN

E

INF

HF
…

AS D’s entry
…

HF
…

AS C’s entry
…

INF

HF
…

AS D’s entry
…

HF
…

AS E’s entry
…

forwarding path
(in SCION header)

INF
HF

HF
HF

INF
HF
HF
INF
HF
HF

Figure 8.1: Example of the path construction.

down-segments have a common AS through which the forwarding
path is constructed (see Section 8.2 and Figure 8.5).

– PEER: describes whether the constructed forwarding path is of
peering shortcut type (see Section 8.2).

The values for these flags are set by an end host that constructs the
forwarding path.

Similarly, each hop field has a FlagsHF field that describes the purpose of the
hop field. It contains the following flags:

• XOVER: used to signal that this hop field is at a cross-over point between
hop fields from different path segments, and needs special processing. A
border router that processes the hop field will advance to the next info
field and thus switch to the next list of hop fields (i.e., hop fields from the
next path segment).

163

8 Data Plane

• VRFY-ONLY: used to mark hop fields that are not used for making a
forwarding decision, but are used only for MAC verification.

• FWD-ONLY: used by an AS to disallow local delivery of packets (i.e., a
forward-only AS). This flag is included in the MAC calculation, thus it is
immutable (i.e., its value cannot be altered).

The value of the FWD-ONLY flag is set by an AS during beaconing, and the
values of the other flags are set by the end host that constructs the forwarding
path.

The flag fields enable fast forwarding at border routers since the forwarding
decision is directly expressed by the flag fields, requiring minimal additional
validation.

Beside the flag field, a hop field contains the following information:
• the expiration time field denoting when the hop field expires,
• ingress and egress interface identifiers between which a packet is to be

forwarded, and
• the MAC field that authenticates the hop field.

The forwarding path format can be described as follows:

INFup } HF0
up } HF1

up } . . .
} INFcore } HF0

core } HF1
core } . . .

} INFdown } HF0
down } HF1

down } . . .

To forward SCION packets, the current position on the path is encoded in
the SCION header with two pointers:

• CurrINF: points to the current info field,
• CurrHF: points to the current hop field.

Details on the forwarding path format are presented in Section 15.1.3. The
next section describes how an end host transforms a combination of path
segments into an actual forwarding path.

8.2 Creation of Forwarding Paths

In this section, we illustrate path combination, i.e., how an end host constructs
a forwarding (end-to-end) path under different topologies. The forwarding path
construction process is executed when an end host establishes a connection with
another end host. Prior to the path construction process, the path lookup process
returns a set of path segments that are later combined by the end host to reach
the desired destination (see Section 7.2). The packet-forwarding process using
the constructed forwarding paths is demonstrated by an end-to-end example

164

8.2 Creation of Forwarding Paths

(including updates of the CurrINF and CurrHF fields) in Section 10.8 on
Page 223.

p

c c c

1a 1b 1c 1d 1e 2 3 4

Figure 8.2: SCION forwarding paths created by an end host. The blue circles
represent the end hosts; the shaded gray circles represent core ASes,
possibly in different ISDs; blue lines without arrow heads denote
hops of created forwarding paths; the dashed blue line denotes
a peering link (labeled “p”); orange lines with arrows stand for
PCBs and indicate their dissemination direction; dashed orange
lines represent core beacons exchanged over core links (labeled
“c”). All created forwarding paths in cases 1a–1e traverse the ISD
core(s), whereas the paths in cases 2–4 do not enter the ISD core.

In the following, we assume that the source and destination end hosts are
in different ASes, as end hosts from the same AS use an empty forwarding
path to communicate with each other. We stress that although end hosts enjoy
freedom in composing their forwarding paths, the possible combinations (i.e.,
the provided path segments) follow AS routing policies and rules such as the
valley-free property (discussed in Section 10.9). The possible combinations are
the following:

• Communication through the ISD core (Case 1 in Figure 8.2): We
consider five scenarios in Case 1, grouped in two blocks as follows:

– Core-segment combination (Cases 1a, 1b, 1d): the last AS of
the up-segment is different from the first AS of the down-segment.
This case requires a core-segment that connects the up- and down-
segment. The final forwarding path then consists of the combination
of up-, core-, and down-segments. The case works analogously if
the two end hosts are in different ISDs.

– Immediate path segment combination (Cases 1c, 1e): the last
AS on the up-segment (ending at a core AS) is the same as the
first AS on the down-segment (starting at the core AS). In this case,
a simple combination of up- and down-segments creates a valid
forwarding path.

• Peering shortcut (Case 2 in Figure 8.2): a peering link exists between
the up- and down-segment. The extraneous path segments to the core

165

8 Data Plane

are cut off. We note that the peering link could also be traversing to a
different ISD.

• AS shortcut (Case 3 in Figure 8.2): the up- and down-segments inter-
sect at a non-core AS. This is the case of a shortcut where an up-segment
and a down-segment meet below the ISD core. In this case, a shorter path
is made possible by removing the extraneous part of the path to the core.

• On-path (Case 4 in Figure 8.2): in the case where the source’s up-
segment contains the destination AS, the up-segment of the source is
sufficient to construct a forwarding path. The ISD core is again not part
of the final path. If delivery is not permitted to the destination AS on
the up-segment (as specified in the hop field), a down-segment needs
to be combined with the up-segment, resulting in the AS-shortcut case
discussed above.

In the following sections, we describe these cases in detail. We begin with the
common case, in which two communicating end hosts are located in non-core
ASes. We then describe communication between end hosts located in core
ASes.

Notation

We use the following notation in this section: HF ABC stands for a hop field that
was generated by AS A, and that can be used for packet forwarding through
AS A, with ASes B and C as preceding or succeeding ASes (resulting in the
AS sequence BAC or CAB). If A is the first or last AS in a path segment, the
absence of either the preceding or succeeding AS is indicated by the symbol ‚.
Arrows in the figures are oriented according to the direction of beaconing.

8.2.1 End Hosts in Non-core ASes

The common case for end-to-end communication is when two communicating
end hosts reside in non-core ASes. Depending on the location of the two hosts,
there are four possible types of path composition, which will be described in
this section. We assume that after the path lookup process (see Section 7.2 on
Page 132), an end host is provided with sets of up-segments, core-segments,
and down-segments.

Paths Through the Core

It is always possible to construct forwarding paths that traverse core AS(es).
However, this option is not preferred and is used as a last resort path since
such a path is usually longer than its alternatives (e.g., peering or shortcut
paths). In order to construct a path that traverses a core AS, the source needs an
up-segment, a core-segment, and a down-segment, which are connecting, i.e.,

166

8.2 Creation of Forwarding Paths

the up-segment starts where the core-segment starts/ends, and the core-segment
ends/starts where the down-segment starts. Such a topology is presented in
Figure 8.3. In the case where up- and down-segments originate from the
same AS, a core-segment is not required. Note that a successful path lookup
guarantees that there exists at least one connecting set of path segments.

INF1 HFAD● HFDGA HFG●D INF2 HFGH● HFH●G INF3 HFH●F HFFHC HFCF●

source to destination path

HFAD● HFDGA HFG●D INF1 HFGH● HFH●G INF2 HFH●F HFFHC HFCF● INF3

destination to source path (reversed path)

D E F

A B C

INF3

AS H

HFH●F

AS F

HFFHC

Peer: E

HFFEC

AS C

HFCF●

AS G’s
entry

AS C’s
entry

AS F’s
entry

src dst

Path segments:

coreparent – child
peering
constructed path

Links:

HG

UP XOVER UP XOVER DOWN

DOWN XOVER DOWN XOVER UP

INF1

AS G

HFG●D

AS D

HFDGA

Peer: E

HFDEA

AS A

HFAD●

AS G’s
entry

AS A’s
entry

AS D’s
entry

INF2

AS H

HFH●G

AS G

HFGH●

AS H’s
entry

AS G’s
entry

Figure 8.3: An example of a path traversing core ASes.

An example of a forwarding path traversing core ASes is presented in Fig-
ure 8.3. Combining the path segments is straightforward in this case: the source
embeds a series of up-segment hop fields (from its own AS A to core AS G),
two core-segment hop fields (from AS G to AS H), and three down-segment
hop fields (from core AS H to the destination AS C) as a forwarding path.

Each series of hop fields is prepended with an info field, which encodes a
timestamp used to verify the freshness of every corresponding hop field and
information about the path type. The forwarding path goes through the core;
thus it does not have either a shortcut or peer flag set. Info fields also contain
information about the direction of the forwarding path (i.e., how interfaces
within the hop fields should be interpreted and how hop fields should be verified).
The direction depends on the propagation direction of a segment: The down
direction (i.e., UP flag set to false) is set when the hop fields are listed in
accordance with the direction of the beacon propagation. For the reversed
direction the UP flag is set.

167

8 Data Plane

Hop fields within each series are ordered according to the order of traversed
ASes. The source marks the last hop fields in each series with a dedicated
crossover flag XOVER, to indicate that hop fields of another path segment start
at this AS. Thus a border router that processes this hop field should switch to
another hop-field series.

The destination end host can reverse the received forwarding path (lower
half of Figure 8.3), by reversing the info and hop fields, switching the values of
UP flags and by setting the XOVER flags for the new crossover points (i.e., the
last hop fields of the first and the second path segments, to indicate to border
routers that read these fields that they should switch to another series of hop
fields here).

Peering Path

With the proliferation of Internet exchange points (IXPs), communication
through peering links is becoming more common. To check whether the des-
tination can be reached via a peering link, the source tries to find a common
peering link between the obtained up-segments and down-segments. If such a
link exists, a peering forwarding path can be constructed.

Figure 8.4 presents an example of a path crossing over a peering link. In
this example, the two path segments contain the hop fields for the peering link
between ASes E and F (i.e., HF EFB and HF FEC, correspondingly).

Besides the corresponding peer hop fields, a peering path includes hop
fields that precede them (HF EGB and HF FGC in our example). These fields
are included as they are necessary for the verification of the peer hop fields.
However, to minimize traffic overhead, forwarding-irrelevant hop fields are not
added to the path. In particular, a core-segment and its hop fields are not used
to construct a peering path. In Section 8.3, we show an efficient algorithm to
find a common peering link in two path segments.

In the example presented in Figure 8.4, the source specifies its intent to
use the shortcut by setting a special flag (i.e., PEER flag) on the info fields. It
also sets the direction (i.e., UP) flag of the hop-field segments. The hop fields
HF EFB and HF FEC are marked with a crossover flag XOVER, which indicates
that ASes corresponding to these hop fields need to process the hop fields in a
special way. Specifically, border routers verify whether hop fields are created
correctly, i.e., whether their ASes permitted the use of the mentioned peering
link. For example, for a packet sent from the source to the destination, AS B
first verifies whether the forwarding encoded within HF BE‚ is allowed for
the packet. To this end, a hop field HF EGB of the parent is needed (as it
was chained to HF BE‚’s generation in the computation of the MAC field of
HF BE‚). When AS E receives the packet, the hop field HF EGB is needed for
the verification of HF EFB, but is not used for the actual forwarding. Such hop
fields are marked with a special VRFY-ONLY flag. The AS verifies that HF EFB

168

8.2 Creation of Forwarding Paths

INF5 HFBE● HFEFB HFEGB INF3 HFFGC HFFEC HFCF●

source to destination path

destination to source path (reversed path)

G

D E F

A B C

INF3

AS G

HFG●F

AS F

HFFGC

Peer: E

HFFEC

AS C

HFCF●

AS G’s
entry

AS C’s
entry

AS F’s
entry

src dst

Path segments:

coreparent – child
peering
constructed path

Links: INF5

AS G

HFG●E

AS E

HFEGB

Peer: D

HFEDB

Peer: F

HFEFB

AS B

HFBE●

AS G’s
entry

AS B’s
entry

AS E’s
entry

HFBE● HFEFB HFEGB INF5 HFFGC HFFEC HFCF● INF3

PEER
UP XOVER

PEER
DOWN VRFY-ONLY

PEER
DOWN

XOVER PEER
UP

VRFY-ONLY

VRFY-ONLY XOVER

VRFY-ONLYXOVER

Figure 8.4: Path composition with a peering link.

was created correctly (i.e., that it is chained to HF EGB), and forwards traffic to
the peer AS.

A similar procedure applies to the processing of hop fields on the down-
segment (i.e., AS F executes analogous steps). The reversed path is analogous
to the original one, except that the UP flags are inverted and the info fields are
moved.

Peering links are allowed between ASes from different ISDs and peering
paths with such links are created in the same way as presented.

Shortcut Path (Common AS on Paths)

The up- and down-segments obtained may contain a common upstream AS.
The example in Figure 8.5 shows such a case, where an end-to-end shortcut
path can be constructed through AS D.

In this case, packets do not need to traverse the ISD core, but can be directly
forwarded from the common AS D to destination AS B. A shortcut path is

169

8 Data Plane

similar to a peering path in that it includes some hop fields that are used only
for the verification of the crossover hop fields (see below).

INF1 HFAD● HFDGA HFG●D1 INF4 HFG●D2 HFDGB HFBD●

source to destination path

HFAD● HFDGA HFG●D1 INF1 HFG●D2 HFDGB HFBD● INF4

destination to source path (reversed path)

G

D E F

A B C

src dst

Path segments:
coreparent – child

peering
constructed path

Links:

INF4

AS G

HFG●D2

AS D

HFDGB

Peer: E

HFDEB

AS B

HFBD●

AS G’s
entry

AS B’s
entry

AS D’s
entry

SHORTCUT
UP XOVER VRFY-ONLY XOVER

SHORTCUT
DOWN VRFY-ONLY

SHORTCUT
UP

XOVER VRFY-ONLY XOVERSHORTCUT
DOWN

VRFY-ONLY

INF1

AS G

HFG●D1

AS D

HFDGA

Peer: E

HFDEA

AS A

HFAD●

AS G’s
entry

AS A’s
entry

AS D’s
entry

Figure 8.5: The path composition through a common AS.

To establish such a shorter path, the source specifies the path type as shortcut
(i.e., it marks the info fields with the SHORTCUT flag), and marks the hop fields
HF DGA and HF DGB as crossover points (i.e., it marks them with the XOVER
flag). Similarly to the peering case, hop fields HF G‚D1 and HF G‚D2 are added
only for verification purposes, and are marked with the VRFY-ONLY flag. The
reversed path is analogous.

Destination AS on Path

In the last case, the destination is an AS on the up-segment. No forwarding
path for this case should go through a core AS. Also, the up-segment (on
which the destination is placed) alone should be sufficient to forward packets
to the destination. However, the ingress router of the destination AS has to be
informed that a packet can be terminated at the AS.

An example of such a path construction is presented in Figure 8.6, where
the destination is within AS D, which is on the up-segment. In this case, the

170

8.2 Creation of Forwarding Paths

INF1 HFAD● HFDGA HFG●D

source to destination path

HFAD● HFDGA HFG●D INF1

destination to source path (reversed path)

G

D E F

A B C

INF1

AS G

HFG●D

AS D

HFDGA

Peer: E

HFDEA

AS A

HFAD●

AS G’s
entry

AS A’s
entry

AS D’s
entry

src

dst

Path segment:

coreparent – child
peering
constructed path

Links:

UP

VRFY-ONLY DOWN

VRFY-ONLY

Figure 8.6: Path composition when the destination is contained in the up-
segment.

source composes the series of hop fields up to the destination and sets AS D
as the destination address. To enable verification of the HF DGA hop field,
the source additionally adds the next (upstream) hop field, and marks it with
the VRFY-ONLY flag. The last router, i.e., the ingress router of the destination
AS, verifies the hop field HF DGA using the upstream HF G‚D hop field. If
the verification succeeds and the destination AS matches the router’s AS, then
the packet is also allowed to terminate at the destination AS. In our example,
HF DGA is the last hop field processed, and HF G‚D is used for verification
only.

The construction of the reversed path and the forwarding path where the
source is on a down-segment are analogous.

An AS can disallow such a packet termination (i.e., it can create hop fields
that can only forward packets between the AS interfaces, and that cannot deliver
packets to the AS end hosts). This is done by setting the FWD-ONLY flag on the
hop field during its creation (i.e., during beaconing).

An example of such a situation is presented in Figure 8.7. The topology and
the path segment are identical to the previous example, except that AS D has

171

8 Data Plane

set a FWD-ONLY flag on a hop field HF DGA during beaconing. This means that
AS D can only be a transit AS for this path, and a packet cannot terminate at
this AS. This flag is immutable (i.e., used in MAC verification), hence if an end
host tries to terminate a packet at the AS D (by setting the destination AS to
D, as shown), the router will not deliver it. The end host can try to unset the
FWD-ONLY flag, but then the MAC verification at AS D will fail. (To deliver the
packet in this case a down-segment to D is needed, such that a shortcut path as
described previously can be constructed.)

INF1 HFAD● HFDGA HFG●D

source to destination path

HFAD● HFDGA HFG●D INF1

destination to source path (reversed path)

G

D E F

A B C

INF1

AS G

HFG●D

AS D

HFDGA

Peer: E

HFDEA

AS A

HFAD●

AS G’s
entry

AS A’s
entry

AS D’s
entry

src

dst

Path segment:

coreparent – child
peering
constructed path

Links:

UP VRFY-ONLY

VRFY-ONLY

FWD-ONLY
(set by AS D)

FWD-ONLY

FWD-ONLY DOWN

Figure 8.7: An example of a forward-only AS, which does not work to deliver
a packet.

8.2.2 End Host(s) in Core ASes

We next describe the cases where at least one end host of an end-to-end connec-
tion is in a core AS. These cases do not involve peering links, common ASes of
the involved path segments, or end-host ASes on the path. As a consequence,
creating a forwarding path is less complex since it is simply a combination
of entire path segments (which is similar to the path-through-the-core case in
Section 8.2.1).

172

8 Data Plane

Both End Hosts in the ISD Core

Path construction between two core ASes is straightforward since path prop-
agation in the core guarantees that there is always a direct core-segment that
connects two core ASes. Thus, the source simply obtains a core-segment and
uses it directly.

An example of such a case is presented in Figure 8.9. The source just extracts
the hop fields from the core-segment and concatenates them to construct a
forwarding path.

INF2 HFGH● HFH●G

source to destination path

HFGH● HFH●G INF2

destination to source path (reversed path)

D E F

A B C

src dst
Path segment:coreparent – child

peering
constructed path

Links:

HG

UP

DOWN

INF2

AS H

HFH●G

AS G

HFGH●

AS H’s
entry

AS G’s
entry

Figure 8.9: An example of a forwarding path between two core ASes.

8.3 Efficient Path Construction

In this section, we present an efficient path-construction algorithm, which
allows an end host to find and build the shortest forwarding path towards a
destination AS. The algorithm is executed by the end host once it has obtained
the corresponding up-, core-, and down-segments to the destination AS.

A path segment consists of a list of ASes, where each AS is identified by its
ISD and AS identifiers (ISD ID, AS ID) and a list of entries with ingress and
egress interfaces. Thus, even if two paths contain the same list of (ISD:AS)
tuples, they can differ at the granularity of interfaces (e.g., when two ASes

174

8.3 Efficient Path Construction

share more than one link). Naively, an end host can try to join all possible
combinations of up-, core-, and down-segments and select the best end-to-
end path among them. However, exhaustive exploration is inefficient if path
segments contain many peering links, or if there are many path segments
available. We resolve this issue by designing an efficient path-construction
algorithm that finds the shortest path(s) in terms of AS hops. The algorithm
operates in two steps: the graph-construction step and the path-construction
step.

8.3.1 Graph Construction

In the first step, the source host creates a weighted and directed graph, based
on the up-, core-, and down-segments. Each path segment contains a list of
(ISD ID, AS ID) tuples; each tuple uniquely identifies an AS. The graph is then
constructed as follows:

1. For each up-segment of the source host’s AS, the algorithm traverses
the ASes starting from the source AS and creates a node in the graph
for every new AS encountered in the up-segment. The algorithm adds a
directed edge from the source AS to the encountered AS, annotated with
the hop distance from the source AS. Furthermore, a path identifier is
also used to annotate the edge.
If the encountered AS already has a node in the graph, a new edge is
added from the source AS node to the encountered AS node, and the
edge is annotated with the same information as described earlier. Thus,
multiple edges can exist between two nodes.
If an AS has a peering link with another peer AS, a new edge is similarly
added between the nodes for the source and the peer AS. In this case, the
edge is additionally annotated as a peering link.

2. The same procedure is followed for each down-segment of the destination,
with two differences. First, the direction of the edge is reversed, so that
the edge points towards the destination AS. Second, peering links are
not added, since a valid end-to-end path can traverse at most one peering
link; if a peering link is traversed, it has already been added in step 1 of
the algorithm.

3. For core-segments, the algorithm complements the graph as follows.
First, it selects only the segments that connect the core ASes of the up-
segments to the core ASes of the down-segments. Then, it traverses every
AS in the selected core-segments and adds an edge from the core AS of
the up-segment to the encountered core AS, similarly to the previous two
steps. Also, it annotates the edge with the hop distance and with a core
path flag.

175

8 Data Plane

A

B

C

D E

F

G

H

core

J

p1
p2 p3

Figure 8.10: An example topology, with up-segments (p1, p2) and down-
segments (p3) obtained by the source (placed in AS F) towards the
destination (placed in AS J).

Example. We provide an example to explain how the graph is constructed.
Figure 8.10 shows an example topology with the up-segments (p1 and p2) of the
source AS F, and the down-segments of the destination AS J; for simplicity, we
omit the core-segments. The source host in AS F obtains the path segments p1,
p2, and p3 and constructs the graph in Figure 8.11, according to the procedure
described earlier.

All outgoing edges from F point to an AS that is either on an up-segment of
F or has a peering relationship with an AS that is on an up-segment of F (e.g.,
AS H). Note that the edges do not correspond to physical links (as shown in
Figure 8.10) and that the weight of each edge denotes the hop distance from the
source AS to the corresponding AS. The reason the graph is constructed in this
way is that the source host should not combine valid path segments to create a
new path segment. For instance, the combination F Ñ E ÑCÑ BÑ A is not
valid, as it is a combination of p1 and p2.

The same procedure is followed for the down-segments, but the direction of
the edges is reversed. Thus, all edges point towards the destination AS (AS J in
Figure 8.11).

The algorithmic complexity of the graph-construction step is linear with
respect to the number of received path segments (whether up-, down-, or core-
segments), since the algorithm processes every received path segment once.
The intermediate nodes in the graph of Figure 8.11 can be added to a hash table
for efficient lookup, i.e., lookup in constant amortized time, when they have
to be looked up in order to add the corresponding edges in the graph; this is
possible as the number of paths is relatively small.

176

8.3 Efficient Path Construction

F H

B

C

D

G

E

A

J

1, p
1

2, p
1

2, p2

3, p1

4, p1, peer
4, p1
1, p2

3, p2

1, p3

2, p3

Figure 8.11: Constructed graph based on the up- and down-segments. Edges
are annotated with the hop distance between the corresponding
ASes, a path identifier, and a peering-link flag in case a peering
link is traversed.

8.3.2 Path Construction

The construction of the graph turns path construction into a simple graph
traversal problem. The source host can use existing algorithms to discover the
shortest path, all shortest paths, or all paths to the destination. For example,
using Dijkstra on the graph in Figure 8.11 yields the shortest path F Ñ H Ñ J,
with a total cost of 5.

The paths that are discovered on the constructed graph do not correspond
directly to physical paths. However, the edges of the constructed graph are
annotated with all the required information so that the source host can discover
the actual path and set up the hop fields. For example, the edges of the path
F Ñ H Ñ J inform the source host that the end-to-end path is formed by
combining p1 and p3 and that it traverses a peering link.

Using Dijkstra for path construction yields an algorithmic complexity of
Op|L|`|V | log |V |q, where |V | is the number of distinct AS nodes in the received
path segments and |L| is the number of distinct links in the received path
segments; recall that a link is uniquely identified by the interface identifiers
and not by the AS identifiers. However, note that the graph-construction step
generates a directed acyclic graph (DAG), which enables an even faster shortest-
path algorithm: with topological sorting on the DAG, the single-source shortest
distances can be calculated in Op|L|` |V |q.

177

9 Host Structure

JASON LEE, ADRIAN PERRIG, PAWEL SZALACHOWSKI

This chapter introduces the host software components that enable applications
to communicate via SCION. An overview is given in Figure 9.1.

The central point of the host structure is the SCION dispatcher, which handles
all incoming and outgoing packets and interacts with the higher-layer protocols.
The SCION daemon handles control-plane messages, e.g., obtaining paths to
remote ASes. Currently, SCION supports the following transport protocols:
TCP, UDP, and the SCION Stream Protocol (SSP). The last is SCION’s native
multipath transport protocol. UDP and SSP data is handled by the SCION
socket library. Implementations of all three protocols provide an API similar to
the Berkeley Socket API. Since the host structure is under active development,
we expect many changes in this area over the coming years. For example, we
are currently working on a SCION extension of the QUIC protocol [105].

Chapter Contents

9.1 SCION Dispatcher . 179

9.2 SCION Daemon . 183

9.3 Transmission Control Protocol (TCP/SCION) 185

9.4 SCION Stream Protocol (SSP) 188

9.1 SCION Dispatcher

The initial version of the SCION host stack follows two design choices, which
affect how packets are handled: (a) the host stack runs over an IP/UDP over-
lay to communicate within an AS, and (b) all code executes in userspace.1

Consequently, we designate a UDP port through which all SCION packets are

1In a future release of SCION, the functionality of the dispatcher will execute inside a kernel
module.

179

9 Host Structure

TCP
Application

RPC Middleware

control
plane

data

UDP / SSP
Application

SCION Socket LibraryRPC Middleware

control
plane

SCION
Daemon

incoming / outgoing
network packets

control
plane

data

TCP
Stack

RPC Middleware

SCION Dispatcher

UDP / SSP State

SCION
en-/decapsulation

Figure 9.1: Overview of SCION’s end-host software structure.

communicated and define a single process (within each host) that handles all
incoming SCION packets.

The dispatcher performs two tasks: (a) handling encapsulation and decap-
sulation of the IP/UDP overlay and the SCION headers, and (b) interacting
with the transport protocol stacks. That is, the dispatcher mediates between
applications and transport protocol implementations to process incoming and
outgoing packets.

More specifically, for outgoing packets, the TCP stack and UDP/SSP appli-
cations send their data along with the packet’s metadata. The metadata includes
a forwarding path and an address of the first SCION hop (i.e., border router)
on the path. The dispatcher, upon receiving the data and its metadata, encap-
sulates the data and sends the packets to the specified border router. The path
and the first-hop address are provided to applications by the SCION daemon,
which has the required control-plane information from the discovery service
(Section 7.4.6).

For incoming packets, the dispatcher decapsulates the overlay header and
parses the SCION header to identify the transport protocol. The dispatcher
processes packets differently for different transport protocols. All TCP packets
are passed to the TCP stack; for UDP and SSP packets, the dispatcher parses
the identifier associated with the incoming packet and delivers the packet to the
application that is registered for that identifier.

180

9.1 SCION Dispatcher

9.1.1 Application-to-Dispatcher Communication

Communication between the dispatcher and applications is implemented via
reliable Unix domain sockets. However, depending on the transport protocol,
the communication between applications and the dispatcher differs.

TCP Applications

TCP applications and the dispatcher communicate through a remote procedure
call (RPC) middleware which consists of interacting parts: (a) the applications
side (to send calls and receive responses), and (b) the TCP stack (to receive
calls, execute them, and send responses back).

For each application-level socket there is a corresponding Unix socket and
native TCP state. For example, an application executing the connect() system
call sends an RPC message to the RPC middleware of the TCP stack, which
receives the message, executes the native TCP connect() call on the corre-
sponding TCP socket, and returns to the application the results of the call (e.g.,
a success or an error code).

For connected sockets, i.e., after a successful connect() or accept(), the
RPC middleware enters pipe mode, in which it simply passes the data between
an application socket and the corresponding TCP socket.

UDP and SSP Applications

The interaction between the dispatcher and UDP/SSP applications is simpler
than in TCP, as the UDP and SSP stacks are implemented within the SCION
socket library. All UDP and SSP applications must register with the dispatcher
to send and receive packets. The format of the registration message depends on
the transport protocol used by the application.

UDP registration messages have the following format:
• addr represents the address bound by the application (its length depends

on the type).
• SVC is an optional 2-byte field that specifies the service type to register

for (e.g., beacon servers register for SVC 0).
SSP registration messages have the following format:

• flowID is an 8-byte identifier for the connection used by the application.
• addr is a variable-length address bound by the application.
• SVC is an optional 2-byte SVC address type to register for.

We emphasize that SCION addresses are triples: (ISD,AS,ADDR), where
ADDR is an address that has significance only within the host’s AS. Because
IP addresses need to be unique only within an AS, the ISD-AS information
is needed in the registration message to correctly identify the receiver. For

181

9 Host Structure

example, an application that registers for the address (1,1,1.2.3.4) should
not receive packets with destination address (2,1,1.2.3.4), even though
both addresses may belong to the same host.

9.1.2 Outgoing Packets

TCP

When the TCP stack sends TCP segments to the dispatcher, they are passed
along with their metadata. A segment’s metadata includes the information
required to encapsulate the segment into a SCION packet (i.e., source and
destination addresses, a forwarding path, and optionally extensions). The TCP
stack also passes the first-hop information, which is necessary to encapsulate
the SCION packet within a UDP (overlay) packet. The dispatcher creates the
SCION packet, then encapsulates it within a UDP packet, and finally sends it to
the first-hop address.

UDP and SSP

Data sent by UDP and SSP applications is processed by the SCION socket
library. When the library sends a chunk of data it is encapsulated within a
SCION packet. Next, outgoing SCION packets are sent to the dispatcher along
with the first-hop information only (forwarding path and optional extensions
are already included within the SCION packet). Upon receiving a data packet
from an application, the dispatcher parses the first-hop information, creates a
UDP packet and sends the packet to the first-hop host.

9.1.3 Incoming Packets

The dispatcher receives incoming packets by listening on the SCION UDP
port. Upon receiving a packet and decapsulating the overlay IP/UDP header,
the dispatcher obtains a SCION packet. When a SCION packet arrives at the
host, the dispatcher first checks whether both ISD-AS identifier and IP address
indeed identify that host. If not, the packet is dropped. Then, the dispatcher
parses the SCION header (see details in Section 15.1.1 on Page 343) to identify
the layer-4 protocol. To this end, the protocol number (encoded in the NextHdr
field inside the SCION common header, see Section 15.1.1) is used. Then,
depending on the protocol, the data is passed either to the TCP stack or to the
UDP or SSP stack.

182

9.2 SCION Daemon

TCP

If the TCP protocol (i.e., protocol number 6) is used, the SCION header is
decapsulated. The obtained TCP segment is then passed to the TCP stack for
further processing. Along with the segment, the following metadata is passed
to the stack: source and destination addresses, forwarding path, and optionally
extensions. The processed payload (if any) is delivered to an application’s
socket through the RPC middleware.

UDP and SSP

For the UDP and SSP packets, the dispatcher identifies the protocol-dependent
application identifier. For UDP packets (protocol number 17), the application
identifier is the port number. For SSP (protocol number 152), the application
identifier is the 8-byte flow ID. If the flow ID has not been registered, the
dispatcher will look for a wildcard entry that accepts all incoming flows on a
given port number. The SCION packet is not decapsulated at the dispatcher,
and is entirely passed to the listening application, where the SCION socket
library further processes the packet.

9.2 SCION Daemon

The SCION daemon is a background process running on end hosts with the
goals of (a) handling SCION control-plane messages, and (b) providing an API
for applications and libraries to interact with the SCION control plane. More
specifically, the SCION daemon implements the following services:

• Path lookup: provides path lookup functionality for host applications.
The path lookup process is described in Section 7.2, and the path creation
process is described in Section 8.2.

• Name resolution: provides name resolution functionality, i.e., a trans-
lation from a human-readable domain name to a SCION address. The
details of name resolution are described in Chapter 6.

• Trust management: stores received certificates and TRCs, and checks
their authenticity and consistency (when a new certificate/TRC is re-
ceived). Certificates and TRCs can be provided to applications on de-
mand.

• Topology information: provides information about the topology of the
local AS. Topology information includes addresses of border routers
(with their interface identifiers) and information on running services (e.g.,
RAINS or path servers). The topology information is obtained from the
local AS through the discovery service (see Section 7.4.6). If an end host
is multi-homed, the information is provided for all local ASes.

183

9 Host Structure

• Extensions: various SCION extensions and sub-protocols, such as SIBRA
(Chapter 11) and OPT (Chapter 12), implement their control plane as
part of the SCION daemon and extend its API.

To start, the SCION daemon contacts the discovery service(s) of its AS(es)
(Section 7.4), parses the TRC(s) of its ISD(s) (Section 16.1), and optionally
parses the corresponding certificate(s).

9.2.1 API

The SCION daemon exposes its API through a reliable Unix domain socket
with a pre-defined path, which allows userspace applications to interact directly
with it.

Request and Responses

We next describe the most important API calls with their expected results.
To support multi-homed end hosts (i.e., residing in multiple ASes) each API
request can be accompanied by an ISD and AS identifier to specify the AS
whose infrastructure should be used to handle the request.

• Path request: Consider a process that wishes to obtain a forwarding
path to a destination AS. In this case, it queries the SCION daemon with
a path request specifying the destination.
Upon receiving such a request, the SCION daemon attempts to build
forwarding paths to the destination using locally cached path segments.
If it fails, the SCION daemon contacts a local path server, which initiates
the path lookup process (see details in Section 7.2 on Page 132). In the
case of a successful path lookup, the SCION daemon returns a list of
forwarding paths with their metadata. The metadata includes

– the local address of the first border router on the path (in case the
requester process encapsulates and sends a SCION packet on its
own),

– the maximum transmission unit (MTU) of the path, and
– a list of interface identifiers that provide a path-requesting process

with the information about the path’s ASes (and their interfaces).
• Name resolution: Consider a process that needs to resolve a human-

readable domain name to a SCION address (as described in Chapter 6).
The request to the SCION daemon includes the domain name and an op-
tional resolution context, while the response consists of a list of SCION
addresses and additional optional information associated with the re-
quested domain name.

• Topology discovery: Some processes might need topological informa-
tion about the local AS(es). To this end, a process can send a topology

184

9.3 Transmission Control Protocol (TCP/SCION)

discovery request to the SCION daemon. The SCION daemon returns the
topology information (see details in Section 16.3) including addresses of
border routers and their interface identifiers, and information on running
services.

• TRC request: To request a TRC, a process sends a request that specifies
the requested version of the TRC for a given ISD. Without specifying the
version, the most recent TRC (that the SCION daemon has) is requested.
To serve the request, the SCION daemon first searches its local cache,
and if absent, it contacts the local certificate server. We note that the
SCION daemon is pre-loaded with the first TRC.

• Certificate request: Similarly to TRCs, AS certificates can be requested
from the SCION daemon by sending a request that specifies the target
AS (i.e., its ISD and AS identifiers) and the version of the requested
certificate (the field can be empty if the most recent certificate that the
SCION daemon has is requested). To serve the request, the SCION
daemon first searches for the certificate in its local cache; if absent, it
contacts the local certificate server.

Error Codes

In case of a failure of any of the above requests, the SCION daemon returns an
appropriate error code. The most frequent error codes are as follows:

• the requested object does not exist,
• the SCION daemon encountered a problem while processing the request

(this message is followed by a more detailed error description),
• the local recursive server (i.e., path or certificate server) encountered a

problem while processing the request (this message can be followed by a
more detailed error description).

9.3 Transmission Control Protocol (TCP/SCION)

To make TCP available in SCION, TCP was modified by adding (a) SCION
addresses, (b) SCION forwarding paths, and (c) SCION packet extensions, and
by extending the standard TCP checksum algorithm.

Regarding the first modification, the TCP stack was extended to handle
SCION addresses (in addition to IPv4 or IPv6 addresses). A SCION address
is a 3-tuple of the form (ISD, AS, ADDR). SCION addresses introduce the
notion of special service addresses, which are used for SCION service anycast
communication (see details in Section 15.1.2). As implemented via TCP, the
service addresses have to be handled by the TCP/SCION stack.

TCP/SCION sockets listen on the 5-tuple

pISD, AS, ADDR, port, SVCq

185

9 Host Structure

where the first three fields specify the SCION address, the port field denotes
the standard TCP port, and the SVC field specifies the service that is bound to
that socket (e.g., the path service, when a path server listens on the socket). For
standard (non-SCION service) sockets, the SVC field is set to None.

Socket
(1, 19, 10.1.2.1)
port=6093
svc=PATH_SVC

Source App
…
connect(1, 19, PATH_SVC)
…

Socket Selector

SCION
Network

TCP SYN

Socket
(1, 19, 10.1.2.1)
port=220
svc=None

Socket
(1, 19, 10.1.2.1)
port=6091
svc=PATH_SVC

Path Server
…
bind(…, svc=PATH_SVC)
…

Applications

TCP/SCION
Stack

App
…
bind(…, port=220, svc=None)
…

Path Server
…
bind(…, svc=PATH_SVC)
…

Host

Figure 9.2: An example of SCION TCP service communication.

Example. An example of an initiation of a TCP/SCION service connection is
presented in Figure 9.2. The source application from a remote AS (depicted at
the bottom left) wishes to connect with a path service of another AS, for example
p1,19q in this case. The initial SYN packet that the source sends contains the
SVC address, but has an unspecified port (i.e., set to 0), as the source does not
know the ports that are used by the path servers of the destination AS.

The ingress border router at the destination AS forwards the packet to a host
that is designated to serve the path service (see details in Section 7.4). The
packet then reaches the designated host, where two instances of the path server
application are running. Both instances have sockets that are listening to the
service address SVC=PATH SVC. As SVC communication is anycast, the socket
selector (which pairs the packets with the corresponding TCP states) selects
one of the two listening service sockets at random and directs the packet there.
(The socket selector ignores the port field of this packet.)

In the response, a TCP SYN-ACK packet is generated. In the presented
example, this responding SYN-ACK packet will have set the source SCION
address to (1,19,10.1.2.1) and the source port to 6093. The socket selector
at the source is modified to associate the responding SYN-ACK packet with the
correct TCP state. The socket selector on the host is modified to handle the

186

9.3 Transmission Control Protocol (TCP/SCION)

initiation of SVC connections. For all other cases, i.e., if a SYN packet has a
destination address different from SVC, the socket selector associates it as in
standard TCP/IP.

An established end-to-end TCP/SCION connection is identified by the 9-tuple

psrc ISD, src AS, src ADDR, src port,

dst ISD, dst AS, dst ADDR, dst port, protocolq
where the protocol field is set to the TCP protocol number (i.e., 6).

As another consequence of modifying the TCP stack with the SCION ad-
dresses, TCP’s checksum algorithm needs to be extended. In TCP/SCION,
the checksum algorithm accounts for different address sizes due to new SVC
addresses and SCION’s flexible destination addressing.

Our implementation of TCP/SCION offers flexibility with respect to path
management: forwarding paths can be specified by an application or can be
obtained by the stack itself. The former option allows path-aware applications
to select optimal forwarding paths.

Another modified element of the TCP protocol is the calculation of TCP’s
maximum segment size (MSS). As an effective MSS depends on the path and on
the extensions that are used, it must thus be calculated dynamically. The MSS
computation algorithm is modified to incorporate the MTU of the currently
used forwarding path and extensions used in a given packet. We also added an
extension through which communicating parties can inform each other about
their respective MTUs (see Section 15.1.4).

Currently, TCP/SCION is implemented using the userspace lwIP stack [74].
Our implementation exposes a high-level API for Python. An example of a
client-server application is presented in the listing below. One difference from
the standard (TCP/IP) API is that SCION uses triples as network addresses.
Thus client and server have to bind and connect to instances of a special
SCIONAddr class. Another difference is that a client, before calling connect(),
has to obtain a path to initiate communication with a server. To this end, the
get paths() call is used, which communicates with the SCION daemon and
returns a forwarding path with its metadata (e.g., the first-hop address, path
MTU). Consequently, the connect() call is extended to pass a path and its
metadata to the TCP/SCION stack.

from lib.packet.host_addr import haddr_parse
from lib.packet.scion_addr import ISD_AS , SCIONAddr
from lib.tcp.socket import SCIONTCPSocket
import lib.app.sciond as lib_sciond

Set the server ’s address
srv_isd_as = ISD_AS("1-18")
srv_ip = haddr_parse("IPV4", "12.10.61.177")
srv_addr = SCIONAddr.from_values(srv_isd_as , srv_ip)
srv_port = 5000

187

9 Host Structure

Set the client ’s address
cli_isd_as = ISD_AS("2-23")
cli_ip = haddr_parse("IPV4", "92.131.161.3")
cli_addr = SCIONAddr.from_values(cli_isd_as , cli_ip)

def server ():
Bind to the server address and port
sock = SCIONTCPSocket ()
sock.bind((srv_addr , srv_port))
sock.listen ()
Wait for connections
while True:

new_sock , addr , path = sock.accept ()
Handle accepted connection.
print("New connection accepted:", addr , path)
new_sock.sendall(b"Hello from server!")
new_sock.close ()

def client ():
lib_sciond.init()
Get path(s) to AS (1, 18)
reply = lib_sciond.get_paths(srv_isd_as , max_paths =5)[0]
path_info = (reply.path (). fwd_path(),

reply.first_hop (). ipv4(),
reply.first_hop ().p.port)

Create socket and connect
sock = SCIONTCPSocket ()
sock.bind((cli_addr , 0))
sock.connect(srv_addr , srv_port , *path_info)
Receive and print data
print(sock.recv (1024))
sock.close()

9.4 SCION Stream Protocol (SSP)

The SCION architecture provides path control and path transparency to allow
end hosts and applications to select their communication paths. This facilitates
multipath communication as end hosts know properties of the available paths
and can even use several paths simultaneously.

In this section, we provide an overview of the SSP protocol, which is
SCION’s experimental multipath byte-stream transport protocol. It provides
reliable communication using multiple SCION paths, and utilizes mechanisms
for congestion control. In a future release of SCION, the SSP protocol may be
deprecated — instead we plan to add native support for MPTCP [207] and a
multipath variant of the QUIC protocol [105].

An SSP connection starts with the client sending an initial connect packet
to the server using all available paths it has selected to use. The server ac-
knowledges each incoming packet using the path it was received on. After

188

9.4 SCION Stream Protocol (SSP)

this initial exchange, the client knows which paths are available and has an
initial round-trip time (RTT) estimate for each available path. A subset (by
default, two) of these paths will be used as active paths, while the rest are kept
as backup paths in case one of the active paths fails.

For sending data, SSP uses one send buffer and one receive buffer per
connection. These buffers contain all packets that were sent and received over
all paths in a given connection. Internally, the send buffer includes both a list of
freshly queued packets and a list of lost packets that need to be retransmitted.
Retransmissions take priority over new packets in the scheduler. This behavior
may change in the future when new scheduling strategies are implemented.

Under some conditions it is possible that a sender resends a packet even
though the original packet was not lost, for instance if an acknowledgment was
lost. In such cases of duplicate data, the receiver keeps the data that arrived
first.

Due to the use of multiple paths with varying latencies, packet reordering
will likely occur. SSP uses an in-order packet queue and a separate out-of-
order queue. In-order packets are placed at the tail of the in-order queue while
out-of-order packets are inserted in order into the out-of-order queue. When a
new in-order packet arrives, the out-of-order queue is additionally scanned to
determine whether the new packet has filled a hole in the data space.

A single scheduler thread is used to send a packet. The current default policy
is to send the first available packet on the first available path. In the future, more
sophisticated scheduling strategies will be available (e.g., to minimize latency).

Each path performs independent congestion control. The schemes currently
implemented are Constant Bit Rate, PCC [71], TCP Reno, and TCP Cubic.
Future work will include an integrated congestion control scheme such as that
used by MPTCP [206, 207] to ensure fairness for flows that traverse the same
physical link.

Figure 9.3 shows SSP’s packet header format. All SSP packets contain a
common header, then an optional acknowledgment header, and an optional path
header.

SCION header

SSP common header
SSP ACK header (optional)

SSP path header (optional)

,

/

/

.

/

/

-

SSP header

Payload

Figure 9.3: High-level layout of an SSP packet.

189

9 Host Structure

The mandatory SSP common header contains the flow ID field, which identi-
fies the connection. Any packet on any path is identified with its connection
using this ID. Because the identifier is independent of either endpoint’s address,
each host can use not only multiple paths but also multiple addresses with
multiple ISD/AS associations. The header contains also the port field (which is
identical to port fields used in TCP and UDP), and information about the data
in the packet and connection state (e.g., sequence number, flag fields).

Acknowledgment packets contain the SSP ACK header, which informs the
other communicating party about the received data. Another optional header is
the SSP path header. For each connection, the first packet sent on each path
will carry (within the path header) the list of hops that are traversed on the
path. Each hop is represented by a concatenation of ISD, AS, and interface
identifiers.

The SCION host network stack provides the fully implemented SSP protocol,
and the implementation exposes high-level APIs for Python and C. SSP is
a connection-oriented protocol; it thus provides calls such as connect(),
listen(), and accept(). In SSP an application does not need to explicitly
fetch forwarding path(s), as the SSP stack transparently takes care of path
selection.

190

10 Deployment and Operation

YIH-CHUN HU, TOBIAS KLAUSMANN, ADRIAN PERRIG,
RAPHAEL M. REISCHUK, STEPHEN SHIRLEY,
PAWEL SZALACHOWSKI, ERCAN UCAN

How can the deployment of SCION be initiated? Which ISDs exist in the
beginning? How can an ISP or end domain start using SCION and what benefits
are obtained? This chapter discusses deployment and operation aspects of
SCION and provides answers to these questions.

More precisely, this chapter makes two important points: (a) contrary to
what might be expected of a future Internet architecture, the deployment of the
SCION infrastructure requires surprisingly little effort for ISPs and domains, as
few servers and routers need to be installed since SCION re-uses the existing
intra-domain communication network, and (b) even early adopters can benefit
from SCION’s features.

Chapter Contents

10.1 ISP Deployment . 191

10.2 End-Domain Deployment . 199

10.3 The SCION-IP Gateway (SIG) 201

10.4 How to Try Out SCION . 211

10.5 SCION AS Management Framework 215

10.6 Deploying a New AS . 218

10.7 The SCIONLab Experimentation Environment 220

10.8 Example: Life of a SCION Data Packet 223

10.9 SCION Path Policy . 230

10.1 ISP Deployment

From a global perspective, we envision three stages for deployment of SCION:
early, intermediate, and full.

191

10 Deployment and Operation

In the ideal, full deployment case, each ISP and each domain in the world
would deploy SCION. Before that happens, however, achieving an early deploy-
ment ranging from the current 20 domains to about 100 domains with dozens
of deploying ISPs will be an important stage in maturing the technology and
infrastructure, and creating a critical mass of users. The early deployment is
likely to be characterized by highly specialized communication patterns, such
as those involving corporations that desire high availability for safety-critical
communications. During its early deployment, SCION will largely operate as
an overlay network, making extensive use of the current Internet to connect
deploying entities. When SCION operates as an overlay, the BGP routing
system is used. The security guarantees offered by such an overlay deployment
are discussed in Section 13.9.

Between early and full deployment lies a long stretch of intermediate deploy-
ment, which will be characterized by an increase in the diversity of applications
that benefit from SCION’s features. Teleconferencing and bitcoin mining pools
may be among the applications to benefit from SCION’s high availability [12].
Section 10.1.2 provides further details and discussion of this intermediate
deployment phase, which we also refer to as incremental deployment.

We envision that high-availability applications will drive the initial phase of
deployment. We discuss the details of incentives for deployment that will drive
this process in Section 2.5. In the long term, we anticipate that deployments will
diminish in their requirement for high availability over time, with an increase
in demand for other features (e.g., SD-WAN).

In this context, the goal for SCION is to achieve a widely dispersed global
deployment by domains and ISPs, providing the advantage of high availability
due to path diversity [8]. A dispersed deployment will also provide kernels
around which SCION islands can grow, steadily strengthening the properties
that can be achieved locally. In the following sections, we discuss different
options for ISPs to deploy SCION.

10.1.1 ISP Deployment Scenarios

An ISP that deploys SCION needs to first find other SCION ISPs to connect
to. The connection can happen over an existing network link or ideally through
a dedicated link, as we explain further in this section. The ISP then needs to
obtain a certificate for their AS for each ISD it participates in. The details of
this operation are explained in Section 10.6.

A deploying ISP needs to set up SCION border routers and services. Fig-
ure 10.1 contrasts the minimal, intermediate, and ideal deployment scenarios.
In the minimal deployment case, it can have a single SCION border router and
services all deployed at a single location, perhaps even on a single physical
host. The minimal deployment places more reliance on the existing network
infrastructure and therefore fewer guarantees are achieved, as an adversary

192

10.1 ISP Deployment

might overload the legacy network with legacy traffic, clogging the same links
that SCION traffic would use — we discuss such attacks in more detail in Sec-
tion 13.9. In the intermediate deployment case, the ISP would deploy several
SCION border routers adjacent to existing legacy border routers, along with
multiple servers distributed over their network to achieve tolerance to failures.
In the ideal deployment case, in addition to having multiple servers distributed
over the network, the SCION border routers would be directly connected to the
neighboring ISPs’ SCION border routers.

C

P

BS

P
B
C

Path server
Beacon server
Certificate server

S
Current border router

SCION border router

a) Minimal ISP deployment b) Intermediate ISP deployment

P

B C
P

B

S

S

S

c) Ideal ISP deployment

P

B C
P

B

S

S

S

C

Figure 10.1: ISP Deployment: minimal, intermediate, and ideal.

The deploying ISPs can install their border routers in two different ways.
Figure 10.2 shows the possible types of connections that can be established
between border routers: a) depicts a simple deployment model with a “router-
on-a-stick” configuration, where the SCION border router is attached to an
existing legacy border router and communicates with the neighboring SCION
border router over a short overlay connection. The advantage of this deployment
is that the SCION border router does not interfere with legacy IP traffic, but
the disadvantage is that legacy IP traffic may interfere with SCION traffic in
case the legacy link is congested. b) shows the ideal type of SCION router
deployment, where the two SCION border routers are directly connected via a
cross-connect between the deploying ISPs, achieving the strongest security and
availability properties.

193

10 Deployment and Operation

a) Router-on-a-stick b) Ideal, cross-connect

SCION border router Current border router

SS
S S

S

Figure 10.2: Different types of connections between border routers of different
deploying ISPs.

We continue our deployment discussion by providing details of two comple-
mentary scenarios: incremental deployment to provide path diversity and global
connectivity through overlay paths (ensuring partial security and availability
properties), and an island of connected SCION ISPs to provide full SCION
security and availability guarantees for communication within the island.

10.1.2 Early and Intermediate Deployment

During the early stages of deployment, SCION islands (see Section 10.1.3) may
not be directly connected, i.e., ASes that deploy SCION may not be contiguous.
To enable connectivity between such ASes, we inter-connect SCION ASes
via overlay tunnels utilizing the current Internet infrastructure. One common
approach for creating an overlay network is to encapsulate the new network’s
traffic into packets that can be routed over the legacy network. This is commonly
done today using IP tunnels (i.e., encapsulating traffic inside IP packets).

When relying on properties of the legacy network, it is clear that the avail-
ability guarantees of the overlay network depend on the reliability of the IP
tunnels. That is, IP tunnels should be resilient to failure, but should also be
robust if exposed to any attack that degrades availability. In particular, the
tunnels themselves should be robust when facing IP-prefix-hijacking attacks.
To achieve this, tunnel IP addresses are ideally announced using /24 prefix
blocks via BGP, which are very specific prefixes and thus cannot be hijacked as
part of a more general, less specific announcement. Through a series of large-
scale simulations, we show in Section 13.9 that IP tunnels are more resilient to
hijacking attacks than end-to-end paths on the current Internet. Peter et al. [199]
propose a similar high-availability strategy by using IP tunnels, albeit designed
for the current Internet.

For our deployment strategy, we define the following tunnel types:

(a) Access tunnel: A tunnel with which a deploying ISP D1 can offer high-
availability services to customers whose ISPs do not support SCION.

194

10.1 ISP Deployment

ND1 D1Internet

/24 Prefix
announcem.

A B

(a) Access tunnel

D2Internet

/24 Prefix
announcem.

D1

/24 Prefix
announcem.

A B

(b) Inter-site tunnel

Figure 10.3: Tunnels used for incrementally deploying SCION. In each subfig-
ure, circles marked Di represent ASes that have deployed SCION,
and the circle marked ND1 represents a non-deploying AS. Colors
are used to differentiate the different tunnel types.

As shown in Figure 10.3a, to protect the tunnel between A and D1 from
hijacking, the deploying AS D1 announces a /24 prefix via BGP that
contains the IP address used for that tunnel. This announcement reduces
the probability of an adversary successfully hijacking this tunnel if the
adversary is further away from A than D1.

(b) Inter-site tunnel: A tunnel that connects two non-adjacent deploying
ASes D1 and D2 over the Internet (see Figure 10.3b). The ASes need to
protect the tunnels that link deploying sites from prefix-hijacking attacks.
As with the access tunnels above, each of the two ASes would ideally
announce a /24 prefix block that contains the IP address used as its tunnel
end-point address.

We note that the /24 prefix announcements cannot always prevent all hi-
jacking attacks, including hijacking attacks against the tunnels. As the length
(measured in the number of AS-level hops) of the tunnel increases, the resilience
to hijacking decreases. This is because BGP’s path selection algorithm gives
preference to shorter paths. From the attacker’s perspective, hijacking a path
requires the announcement of a shorter or more specific path than the advertised
tunnel paths. Short tunnels thus reduce the possible locations from where an
attacker can launch a successful hijacking attack. In Section 13.9, we verify
this observation through BGP simulations.

One might argue that end domains could also announce /24 prefixes in BGP
to achieve higher resilience to prefix hijacking. However, if every end domain
were to announce a /24 prefix for higher availability, the BGP routing tables
would become too large. Instead, in our approach, since only a few initially
deploying ASes announce /24 prefixes to protect their tunnels, the overhead
on BGP routing tables is small. Furthermore, beyond initial deployment, our
approach benefits from a natural scalability property; as more ISPs deploy
SCION, fewer /24 announcements are needed, since two contiguous ISPs that
deploy SCION can communicate directly through a static route. Consequently,

195

10 Deployment and Operation

we expect the number of announced /24 tunnel prefixes to increase during the
early stage of deployment and then decrease as more ISPs deploy.

10.1.3 Full Deployment: SCION Islands

A full or native SCION deployment means a SCION network that does not
rely on any BGP-based information to provide end-to-end connectivity. Thus,
connectivity is assured irrespective of the state of the BGP system.

In a full deployment, the security and availability properties that SCION
offers are ideal, as has been discussed in earlier chapters. Therefore, a full
SCION deployment at one or several directly connected ISPs will result in
strong communication properties amongst their respective customers. We refer
to such contiguous deployments as SCION islands.

A
S S

S

B

S SCION border router

S

S

S

SS

Figure 10.4: A SCION island consisting of two directly connected ASes.

In our early deployment phase, we already have one such SCION island
in Switzerland, with the ISPs Swisscom and SWITCH. In this setting, several
corporations interested in highly available and secure communication have
started test deployments using this local infrastructure. We describe the current
deployment status in the next section.

10.1.4 Current SCION Deployment

SCION is being tested by several ISPs, and is being evaluated by several
corporations. The largest contiguously deployed infrastructure is currently in
Switzerland. Before describing the deployment path we took in Switzerland,
we would like to mention that there also is a growing SCION infrastructure on
other continents, mainly in North America and Asia. In addition to the physical
infrastructure, several ASes are running on the Amazon Web Services (AWS)
EC2 platform in the US, Japan, Ireland, Australia, and Brazil.

In order to display the installed machines across the world, SCION provides a
Google Maps API to show the various locations and data centers where SCION

196

10.1 ISP Deployment

machines have been installed. Figure 10.5 shows the March 2017 map centered
on Zurich city. The map is located at http://www.scion-architecture.
net/status/.

(Copyright Map Data © 2017 Google)

Figure 10.5: Map of deployed SCION routers, March 2017, Zurich, Switzer-
land.

Equipment

SCION services and routers run on all PC platforms supporting Ubuntu Linux
16.04. The high-speed version of the border router requires Intel DPDK and
the hardware required for DPDK. For our initial deployment, we used a system
based on an HPE ProLiant DL20 Gen9 Server. The DL20 is a commodity 1U
rack-mounted server. It is powered by an Intel E3-1220 v5 processor. The
server has 16 GB of RAM, and two 1 Gb/s network interfaces. Where necessary
(depending on inter-connections to other locations), we additionally equipped
the DL20s with dual 10 Gb/s Intel NICs (X520 series). These NICs, as well as
the on-board NICs (Broadcom BCM5720), support DPDK.

Our codebase is designed for Ubuntu 16.04. Most code is written in Python,
but the performance-critical parts are written in C, C++, and Go.

The infrastructure services run on servers that are distributed throughout an
AS, to achieve fault tolerance to local (internal to the AS) network outages.
Services can also run in a virtualized environment, e.g., in an internal cloud
environment where available.

197

http://www.scion-architecture.net/status/
http://www.scion-architecture.net/status/

10 Deployment and Operation

Deployment in Switzerland

We next discuss the details of the deployment path we have taken in Switzerland.
We believe the Swiss success story can serve as a role model for fostering
deployment elsewhere.

In Switzerland, Swisscom is the largest ISP and telecommunications provider.
Swisscom has been the first adopter of SCION. Currently, Swisscom has several
SCION routers and servers installed in its backbone network.

SWITCH is a non-profit Swiss ISP that provides connectivity to universities
and other research institutions (e.g., CERN and EPFL). Since SWITCH is ETH
Zurich’s ISP, deploying SCION nodes within their ASes enables SWITCH
and ETH border routers to connect directly, removing the requirement of IP
encapsulation when sending ETH SCION traffic to SWITCH’s SCION border
router. Figure 10.6 shows a recent snapshot of SCION-supporting ASes in
Switzerland and their connectivity with each other.

Swisscom SWITCH

ETH Zurich

SCION Service (beacon, path, certificate server)

SCION Border Router

ETH Network

10G Fiber
 1G Copper

SWITCH Engines

ETH LEE

CERN CIXP

Equinix ZH1

BE Ittigen

ZH Herdern

Irchel

Höngg

Zürcher Kantonalbank

ZKB SCION Services

Physical Location

SCION ASOverlay Link

BIT

BIT SCION Services

Figure 10.6: Native Deployment ISD Topology, March 2017, Switzerland.

SWITCH also peers with Swisscom and other ISPs, allowing us to incre-
mentally add SCION partners at entities that peer with SWITCH. For this
deployment, all the dedicated routers we deployed within SWITCH were pro-
visioned as border routers, while beacon, path, and certificate servers were
deployed in a virtualized infrastructure running on SWITCH’s cloud-based
compute and storage service called SWITCHEngines.

198

10.2 End-Domain Deployment

As shown in Figure 10.6, the SCION network in Switzerland features several
cross-connects (direct physical connections) between the ASes. Hence, no
BGP routing is required for communication within this infrastructure. The
Swisscom SCION network peers directly with the SWITCH SCION network
at two different locations: Zurich and Geneva. The SWITCH infrastructure
also peers with the ETH infrastructure in two different locations in Zurich,
offering genuine multipath communication even though ETH only has a single
provider. We are continuously growing this infrastructure to provide strong
communication properties to an increasing number of entities.

10.2 End-Domain Deployment

This section discusses the strategy, results, and lessons learned from deploying
SCION-capable routers and servers at domains and ISPs. While certain aspects
of the deployment (e.g., evangelism, coordination, troubleshooting) are beyond
the scope of this book, we hope that the details provided herein will help the
reader recognize the simplicity of deploying SCION.

10.2.1 End-Host Operation with Native SCION Support

Native SCION support for end hosts is available in the Ubuntu 16.04 operating
system. Chapter 9 describes the host environment in detail where SCION
communication is enabled via SCION’s built-in UDP, TCP, and SSP protocols.

10.2.2 End-Host Operation Without Native SCION Support

SCION offers two operation methods that do not require end hosts to upgrade.
The first method is based on HTTP(S) proxies, the second on VPN tunneling.
A more general approach is called the SCION-IP gateway, which we present in
Section 10.3.

SCION HTTP(S) Forward and Reverse Proxy

The SCION HTTP(S) Proxy, as depicted in Figure 10.7, is an approach that
enables a legacy host to browse the web over the SCION infrastructure. The
SCION proxy consists of two parts: Forward (Bridge) Proxy and Reverse
Proxy. The forwarding proxy, which runs on an end host, receives the incoming
HTTP(S) requests from a standard web browser, such as Chrome or Firefox, and
communicates these requests through a SCION multipath socket to the reverse
proxy across the SCION network. The reverse proxy fetches the HTTP(S)
requests from the desired web site on the standard Internet, or from a SCION
web server running on the same machine.

199

10 Deployment and Operation

Browser Web Server

SCION
Forward Proxy

SCION
Reverse Proxy

SCION
Network

Figure 10.7: Deployment via SCION proxy.

The SCION proxy can communicate with a Chrome browser extension
running on the legacy host, which is developed as a command and control
center and a visualization tool for the proxy and the multipath socket. First,
the extension is used to visualize the traffic statistics of the multipath socket.
It records the data for every HTTP(S) session performed on the proxy, and
shows the multiple paths used for each session on a graphical AS topology
or on a Google Maps API with the locations of the relevant ASes and ISDs.
Second, the extension can also be used for route control. The extension offers
an easy-to-use control panel for ISD white- and black-listing, which allows
selection of ISDs to be used for the communication between the forward and
reverse proxies.

VPN-Based Deployment

SCION offers a gateway appliance to route VPN traffic between two VPN
servers over the SCION network. This VPN gateway, which was developed in
collaboration with Swisscom, encapsulates a VPN’s UDP packets and sends
them over a SCION multipath-UDP (MPUDP) connection, and at the other end
decapsulates the packets back into UDP packets. The advantage is that the VPN
server does not need to be changed in any way, yet the VPN connection can
benefit from SCION’s higher availability and the dynamic route optimization
of the multipath socket.

Corporations with remote offices benefit from connecting their networks to
unify IT services and general communications. One way to connect remote
sites is through a leased line, which is a point-to-point connection between
two networks. Leased lines are expensive because, unlike traditional Internet
connections, their use is not shared among several customers. Instead, the
connection is always on, forwarding traffic exclusively for the leaseholder.

An alternative to leased lines is to set up a virtual private network between
the remote locations over the SCION network (see Figure 10.8) using a pair of
SCION VPN gateways. A set of persistent connections can be made between
sites, carrying encrypted traffic between virtual private network (VPN) end-
points. The benefits of this deployment are cost and management; it is cheaper

200

10.3 The SCION-IP Gateway (SIG)

Site A Site B
VPN

End-point
VPN

End-point

SCION
VPN

Gateway

SCION
VPN

Gateway

SCION
Network

Figure 10.8: Site-to-site SCION VPN.

to deploy than a leased line, and it requires no coordination or interaction with
a third party (i.e., the leased-line provider).

While discussing SCION deployment with various organizations, we have
found that site-to-site VPNs are pervasive across organizations of all types.
Companies using site-to-site VPNs can begin using the SCION network trans-
parently by adding the SCION VPN gateways in front of their VPN endpoints
as depicted in Figure 10.8. In this deployment scenario both endpoints are
assumed to be known, so the SCION VPN gateways are configured to forward
the VPN traffic between themselves. With SCION, resilience to DDoS attacks,
high availability thanks to multipath communication, and path control can all
be achieved without paying the high cost of a leased line.

10.3 The SCION-IP Gateway (SIG)

Successfully deploying a new Internet architecture requires being able to in-
teroperate with the existing Internet. This section describes the SCION-IP
Gateway and illustrates how it enables SCION to interoperate with the legacy
IP world. In particular, our mechanism enables legacy IP end hosts to benefit
from a SCION deployment by transparently obtaining improved security and
availability properties.

We first describe the challenges we faced when solving the problems that arise
when designing any new Internet architecture: ensuring interoperability with
the current Internet through minimally invasive changes, enabling transparent
operation, and preventing downgrade attacks to the legacy Internet should
the more secure SCION Internet be available for a given destination. We
then introduce the SCION-IP gateway (SIG) and explain our mechanisms for
addressing the challenges presented. We show hands-on examples on a case-by-
case basis to demonstrate how interoperability is achieved. Finally, we discuss
some rare cases that are not covered by the current design, simply because the
design goal was to enable efficient operation for the common communication
cases.

201

10 Deployment and Operation

10.3.1 Overview of the Problem Space

We first describe the requirements of the SCION-IP gateway and provide an
overview of the problems we intended to address with our design.

IP-in-SCION Encapsulation

Transporting legacy IP traffic over a SCION network requires encapsulating the
IP traffic in SCION packets. The encapsulation protocol should be specifically
non-reliable, to avoid problems with stacking retransmission timers.1

Recall that the maximum payload size of a SCION packet varies depending
on the path length and MTU, and other factors (e.g., extensions used). As IP-
path MTU discovery only allows an MTU to be decreased (it has no mechanism
to increase an MTU again), the IP MTU for an encapsulated connection will
decrease over time as paths change, which results in wasted bandwidth. Thus,
the encapsulation protocol should insulate the IP traffic from the underlying
SCION maximum payload size.

Routing and Connectivity

Providing proper interoperability requires that legacy IP connectivity should
be transparently supported (i.e., communicating legacy hosts should not be
aware that SCION is involved, nor should their connectivity be impacted by
SCION’s involvement). This means that traffic routing must be fully supported
between two legacy IP hosts — one in a legacy (i.e., non-SCION) AS and one
in a SCION AS. The same applies to traffic exchanged between two legacy IP
hosts that both reside in SCION ASes.

As a consequence, the same routeability rules apply regarding public and
private (RFC 1918 [210]) IP ranges. Hosts in SCION ASes that wish to be
reachable by legacy hosts in other ASes must have public IP addresses.

Addressing

As legacy hosts (and clients) will not have support for SCION’s name resolution
service (RAINS), they will still rely on the legacy name resolution service
(DNS). The latter does not provide any specific routing information to the legacy
host, as the SCION AS is not mentioned in DNS; nor would a legacy host know
how to route to a SCION AS in any case. As a consequence, interoperability
requires that bare IP addresses are sufficient for legacy addressing of hosts in
SCION ASes.

1Tunneling a reliable protocol over another reliable protocol can cause retransmission storms
in the event of packet loss.

202

10.3 The SCION-IP Gateway (SIG)

BA

SC
IO

N
LE

G
AC

Y
IP

1.0.0.0/8
C

D E F

I SI SI

II
SISISI

I

(2,1,2.0.0.0/8) (3,1,3.0.0.0/8)

(6,1,6.0.0.0/8)(5,1,5.0.0.0/8)(4,1,4.0.0.0/8)

SCION Internet

IP Internet

SIG

SIG

SIG

6.0.0.0/8

5.0.0.0/8

4.
0.
0.
0/
8

1.0.0.0/8

Figure 10.9: Types of networks we consider, differing in whether they connect
to the SCION Internet, and whether they deploy a SCION-IP
Gateway (SIG) service. The SCION components appear in blue,
and the legacy IP components appear in red.

Support for Layer-4 Protocols

The legacy Internet heavily uses TCP and UDP, but it also uses many other layer-
4 protocols (such as SCTP, L2TPv3, IPIP, ICMP2, etc.). Any interoperability
solution for SCION must be layer-4 agnostic, i.e., it must work for any layer-4
protocol that is in use by legacy traffic.

Support for SCION-only ASes

Some SCION ASes (e.g., AS E in Figure 10.9) may decide to be directly
connected to both the legacy IP Internet and the SCION Internet. Other networks
(e.g., AS F) may decide they do not want (or need) a direct connection to the IP
Internet. Both of these cases should be fully supported.

10.3.2 Interoperability Between SCION and IP

The SCION-IP gateway (SIG) service is responsible for providing interoperabil-
ity between SCION and the legacy IP world. Every SCION AS that wants to
enable legacy IP connectivity between its legacy hosts and those in other ASes

2ICMP is counted as layer-4 in this context.

203

10 Deployment and Operation

deploys a SIG service. The service takes care of routing and encapsulation
of legacy inter-AS traffic. All legacy traffic between SCION ASes is handled
by the SIG service, with the sending side encapsulating the traffic, and the
receiving side decapsulating it again back into regular IP packets.

All legacy traffic into (or out of) a SCION AS goes through the SIG service,
by means of legacy IP routing rules. This means that the SIG service must be
fast, in order to keep up with the traffic flow. It must also be robust, and able to
deal with any packet loss in the encapsulated traffic.

Routing

In the simplest case, that of a SCION AS having a direct connection to the IP
Internet (e.g., AS E in Figure 10.9), all outgoing legacy traffic is sent via the
SIG service by setting it as the default IP gateway inside the AS.3 For incoming
legacy traffic, the AS advertises its local IP allocations via its IP border routers
(see solid red arrows in Figure 10.9). Those routers’ local routing tables have
the SIG service set up as the next hop for the local IP allocations, and forward
the incoming traffic there.

In the case of a SCION AS without direct connection to the legacy Internet
(e.g., AS F in Figure 10.9), connectivity is achieved by having another SCION
AS (e.g., AS E) offer the use of its SIG service and legacy connection. Outgoing
legacy traffic in F is routed to the local SIG service, which encapsulates the
legacy traffic and sends it to the SIG in E, which decapsulates it into regular
IP packets and sends it over its connection to the legacy IP Internet. Incoming
legacy traffic is handled in an analogous way; AS E advertises F’s IP allocations
on the legacy Internet, and forwards incoming legacy traffic to F via E’s SIG
service.

Mapping Legacy IP Addresses to SCION ASes

When the SIG service receives a legacy IP packet, it needs to determine the
SCION AS to which the destination IP belongs, if any. This mapping from
public IP to SCION AS needs to be verifiable, to prevent an AS from claiming
IP space it does not own (either maliciously, or through misconfiguration). Such
verifiability is achieved by each SCION AS exporting an IP allocation config
(IAC) via its certificate service. The IAC contains a list of IP allocations the AS
owns, together with the public key of the AS. Figure 10.10 shows the IACs of
three different ASes.

Each list of IP prefixes is signed by the corresponding RPKI authority, i.e.,
by the IANA, by a regional Internet registry (RIR), or by a local Internet
registry (LIR). (The IAC additionally contains the SCION ISD-AS identifier

3Briefly as background, the default gateway in IP is the default router to which a host sends an
IP packet if the destination host is outside the local network.

204

10.3 The SCION-IP Gateway (SIG)

IP Allocation Config
ISD-AS: 13-559

IP Allocation Config
ISD-AS: 7-3303

IP Allocation Config
ISD-AS: 8-8447

SIG

IP ranges:
- 82.130.64.0/18
- 86.119.0.0/16
- 89.206.64.0/18
Public key:
- af92fcc32a3..

RIR

AS

IP ranges:
- 92.104.0.0/14
- 95.152.96.0/19
- 2a06:d581:3000::/36
Public key:
- 356fee66f7df6..

RIR

AS

IP ranges:
- 193.187.224.0/20
- 2001:67c:211c::/48
Public key:
- 0c2ec54e018ec..

RIR

AS

IPv4/IPv6 ISD-AS
82.130.64.0/18 13-559
86.119.0.0/16 13-559
89.206.64.0/18 13-559
92.104.0.0/14 7-3303
95.152.96.0/19 7-3303
193.187.224.0/20 8-8447
2001:67c:211c::/48 8-8447
2a06:d581:3000::/36 7-3303
... ...

Figure 10.10: IACs of three ASes collected by the SIG service, and compiled
into a mapping from IP address ranges to SCION ISD-AS num-
bers.

and timestamps, which we omit here for brevity’s sake.) Each IAC is finally
signed with the AS’s private key, which is the private key that corresponds to
the public key contained in the signed IP prefix list.

The SIG service periodically fetches an updated IAC from every remote
SCION AS, by sending a request to the SIG service address for each AS.4 The
SIG also offers its IAC to the remote SIG, announcing its presence to quickly
enable operation after a SIG is set up. Each SIG then verifies the signatures on
the IAC. Based on all the received and valid IACs, the SIG service constructs
a local mapping of IP ranges to SCION ASes. The SIG service makes this
mapping available for query by local SCION clients, in case they want to look
up the SCION AS for a given IP address.

If a legacy IP packet arrives with a destination address that is not covered by
the map, it is assumed to be in a legacy (i.e., non-SCION) AS, and is routed to
the legacy Internet.

Encapsulation

The SIG encapsulation protocol is built on top of UDP/SCION. It converts
legacy IP packets into a byte stream to the remote SIG service (see Figure 10.12).
The stream contains the original layer-3 (i.e., IP) and above contents of the en-

4To assemble the necessary list of all ASes, the coordination protocol among ISDs (as described
in Chapter 5) is used to provide a list of all ISDs, and the core certificate servers of the ISDs
provide information about the ASes inside the ISDs.

205

10 Deployment and Operation

capsulated IP packet(s). Each encapsulated packet starts on an 8-byte boundary,
with padding after the payload of the previous encapsulated packet if necessary.

The SIG service communicates with a single stream per remote SCION AS
(i.e., all legacy traffic from one SCION AS to another is transported in the same
stream).

Each SIG payload starts with a SIG header: a 4-byte sequence number, a
2-byte index field, and two unused bytes.

0 32 48 64

sequence number index unused

Figure 10.11: Format of the SIG header.

• The sequence number is used by a receiving SIG service to detect
packet reordering and loss. It starts from zero for a given direction of
traffic and pair of SIG services, and increases monotonically by one with
every SIG packet. It resets whenever the sending SIG service restarts or
the value reaches 232. Figure 10.12 shows increasing sequence numbers
for the encapsulation of five IP packets in four UDP/SCION packets.

• The index field is used to allow the receiver to be resynchronized in the
event of packet loss. It points to the next start of an encapsulated packet
in the SIG payload, if any. The index is multiplied by eight to get the byte
offset from the start of the SIG payload. If no encapsulated packets start
in this payload, the value is zero (e.g., the packet with sequence number
2 in Figure 10.12). An index value of one indicates that the encapsulated
packet starts at the beginning of the payload.

P1 P2 P3 P4 P5

I
P

T
C
P

P
a
y
l
o
a
d

I
P

T
C
P

P
a
y
l
o
a
d

I
P

U
D
P

P
a
y
l
o
a
d

I
P

U
D
P

P
a
y
l
o
a
d

I
P

I
C
M
P

seq: 0 index: 1 seq: 1 index: seq: 2 index: 0 seq: 3 index:

Figure 10.12: Encapsulation of five IP packets.

With the combination of sequence number and index, packet loss can be
detected and the receiving SIG service can resume operation at the start of the
next encapsulated packet in the stream, ensuring efficient recovery.

SIG Negotiation

When a SIG service wants to send encapsulated traffic to another AS, it needs
to determine to which address and port to send the traffic. While it can contact

206

10.3 The SCION-IP Gateway (SIG)

the remote SIG service by sending a message to the SIG SVC address for that
remote AS, this is not the intended procedure for high-volume traffic.5

Instead, the sending SIG service first sends a query to the remote SIG SVC
address, and the remote instance responds with its own address, SCION control
port, and dedicated encapsulation port. The latter is used because encapsulation
traffic cannot be distinguished from SCION control traffic.

This query is sent every 500 ms, for as long as the sending SIG service desires
to send traffic to the remote AS. If no response is received to two consecutive
queries, the sending SIG service will use the remote SIG SVC address again,
and start sending packets to the new address it receives in response. This allows
failover in case the remote SIG instance becomes unreachable.

If there is no SIG service in the remote AS (or there are no instances running),
the remote border router will send an SCMP Unknown Host error in response.

Client Protocol Negotiation

When faced with a name to resolve or a bare IP address, client end hosts
supporting SCION need to decide what type of connection to try first, possibly
necessitating additional lookups. In general, we assume a legacy host does
not have access to RAINS data and cannot extract information from SCION
addresses. Below, we therefore only consider SCION-enabled clients and their
behavior.

Recall that where we mention SCION hosts, it is implied that the host is
dual-stacked, i.e., the host supports both IP and SCION networking. Also note
that for local traffic within an AS, the SIG is not involved.

Without DNS/RAINS. A SCION client presented with a SCION address
first tries to make a SCION connection. If this fails, it tries a legacy IP connec-
tion. When presented with an IP address, a client queries the IAC of the SIG
for the corresponding ISD-AS. If a mapping is found, the client tries to make a
SCION connection. If this fails, or if there is no mapping, the client attempts to
connect using legacy IP.

With DNS/RAINS. In the case where the destination is identified by a
host name (i.e., not by a SCION or IP address), the SCION client performs
both RAINS and DNS lookups on the host name. The client always prefers
the RAINS answer over the DNS answer for positive entries. That is, if both
RAINS and DNS have an entry for a name, the client uses the RAINS answer.
If there is no entry for the name in RAINS, the client can fall back to using the
DNS answer, if any. If the RAINS answer contains a bare IP (i.e., not a SCION

5Border routers perform heavier processing on packets with local SVC destinations, in order to
select a specific service instance.

207

10 Deployment and Operation

address), the client treats it as a legacy host. If the answer is a SCION address
or if it only gets a positive answer from DNS, the client then treats this case as
if it had just been given the address directly.

Protocol mismatch. In some cases, a client tries to connect with a proto-
col the destination does not support. In these cases, errors must be handled
unambiguously and the client must be informed appropriately.

• IP client Ñ SCION service: The destination host generates an error
depending on the protocol used (for example ICMP port unreachable

for UDP). The reply is routed back to the source (if the destination is
remote, its SIG service is used), and the client is informed by its operating
system.

• SCION clientÑ IP service on IP host: The destination host will gen-
erate an ICMP protocol unreachable reply, which is routed to the
client in the same way as in the previous case. The ICMP error does not
contain enough information to match it to a specific application or socket
on the client host. However, the error applies to all SCION connections to
the destination host. Thus, the operating system or network stack delivers
it to all applications that have outstanding connection attempts to the
legacy IP host.

• SCION client Ñ IP service on SCION host: The destination host
generates an SCMP port unreachable error, which is routed back to
the client host as normal SCION traffic, and the client is informed by its
operating system.

10.3.3 Scenarios (Life of a Packet)

We next discuss the most frequent scenarios that occur in the translation between
SCION and IP. We refer to Figure 10.9 throughout the description of the
scenarios. To enhance the clarity of the discussion, the SCION components
appear in blue, whereas the legacy IP components appear in red.

1) IP Host in SCION AS Ñ IP Host in SCION AS

We begin with the case of two IP hosts in two different SCION ASes communi-
cating with each other. In Figure 10.9, this could be E.IÑ F.I (or vice versa).
We do not consider connections from/to AS D in this scenario since D does not
deploy a SIG.

We assume that client host E.I connects to a web server, say F.I, and that
E.I knows the corresponding destination IP address, say 6.6.6.6, (possibly
through a DNS lookup beforehand). The web server listens on port 80 and uses
TCP as transport protocol. E.I uses E’s SIG service as its default gateway.

208

10.3 The SCION-IP Gateway (SIG)

Once the first packet from E.I arrives at the source SIG service (in AS E), the
address and port of the destination SIG service (in AS F) is needed to send the
encapsulated traffic. To request that address and port, E’s SIG service queries
its aggregated IAC table (see Figure 10.10) to look up the SCION ISD-AS
identifier that corresponds to F.I’s IP address, and sends a query to the remote
SIG SVC address. The remote SIG service instance responds with its own
address, say (6,1,6.0.0.1), a SCION control port P, and an encapsulation
port Q. E’s SIG service will then encapsulate E.I’s IP packets as shown in
Figure 10.12 and send them to (6,1,6.0.0.1) on the encapsulation port Q.

If there is no SIG service in the remote AS (as for example in AS D), the
remote border router will send an SCMP Unknown Host error in response. In
this case, the packet will be sent via the legacy Internet.

The remote SIG service instance decapsulates the traffic and forwards the
response to the web server F.I on port 80. The web server replies using the
source address of client E.I and the specified client port. In particular, the
legacy web server does not notice any encapsulation steps that have occurred
on the way from the client. It simply sets the local SIG service as its default IP
gateway.

2) IP Host in SCION AS w/ IP Connectivity Ñ IP Host in IP AS

In this case, a connection from an IP host in a SCION AS (with direct IP
connectivity, such as AS E) is established to an IP host in a non-SCION AS
(such as AS A). The SIG service in source AS E acting as default gateway for
the IP hosts in AS E tries to map the destination IP address, say 1.1.1.1, to a
SCION ISD-AS identifier. It fails to do so since AS A is not aware of SCION.

The SIG service in AS E thus needs to fall back to IP routing: since AS A

has announced its IP prefixes through its BGP-speaking border routers, the SIG
service in AS E uses the legacy inter-domain IP link to send (non-encapsulated)
IP packets to AS A.

3) IP Host in IP AS Ñ IP Host in SCION AS w/ IP Connectivity

In this case, we model the reverse direction of the connection setup described
in the previous case: a connection from an IP host in a non-SCION AS (such as
AS A) is established to an IP host in a SCION AS with direct IP connectivity
(such as AS E). As above, since AS E has announced its IP prefixes using its
BGP-speaking IP border routers, AS A sends (non-encapsulated) packets to
AS E.

The incoming packets at AS E are routed through E’s SIG service. As the
destination of the packets is within AS E, the SIG service will not modify or
encapsulate the packets, but forward them inside AS E to the specified recipient.

209

10 Deployment and Operation

4) IP Host in IP AS Ñ IP Host in SCION AS w/o IP Connectivity

We next extend Case 3 above and assume that AS A connects to a SCION AS
that has no direct IP connectivity, say AS F. In this case, AS F relies on some
other SCION AS with direct IP connectivity, say AS E, to advertise IP prefixes
on F’s behalf to other legacy ASes.

Neither the client in AS A nor AS A itself notices the proxy and thus they
send the IP packets destined for a client in AS F, say host F.I with IP address
6.6.6.6, to AS E. The border router at AS E forwards such proxy traffic to a
SIG service instance, which then encapsulates the legacy traffic and forwards it
to a SIG service instance in AS F. The negotiation protocol is similar to the one
described in Case 1.

The return traffic is covered in the description of Case 5.

5) IP Host in SCION AS w/o IP Connectivity Ñ IP Host in IP AS

This case models the return traffic of Case 4. The destination address of A.I,
say 1.1.1.1, does not appear in the default gateway’s IAC table, which lets
the SIG encapsulate the return traffic and send it to its proxy AS E. The SIG
service in AS E uses its IP connectivity to forward the (decapsulated) return
traffic to legacy IP AS A.

10.3.4 Cases not Covered

Some possible combinations of IP and SCION networking are not covered by
the functionality of the SIG service. Typically, these are rare cases or ones
where there is only minimal gain in supporting them.

SCION Hosts Without IP Stack

A SCION host without an IP stack is a special case that adds a lot of complexity
when communicating with IP hosts. The SIG service described in this chapter
is designed for SCION hosts with IP stacks, which we expect to be the default
case. Hence, SCION hosts without IP stacks are currently not supported.

Transparent Layer-3 Translation (AS Level)

The SIG service only offers transparent layer-3 translation under the following
conditions:

• The connection to the remote side needs a fixed maximum payload size
(meaning either fixed path, or a small payload size). See the above
Encapsulation requirement section for more details.

210

10.4 How to Try Out SCION

• There is an L4 protocol the involved SIG services understand and can
translate (so the SIG service(s) can update checksums, for example).

• All application traffic/logic above layer-3 is completely L3-independent
(i.e., not something like IPSEC in AH mode, nor something which em-
beds layer-3 addresses).

The SIG service is unable to support these conditions for general traffic, and
the last one in particular is unknowable, so this case is not covered by the SIG
design.

Transparent Layer-3 Translation (Service Level)

In order to support connections between hosts in the IP Internet and hosts
in SCION ASes, the translation would need to be done on the SCION host.
However, doing the translation at that point provides no benefits over simply
connecting via IP.

10.4 How to Try Out SCION

This section describes the different ways in which users can download the
SCION source code for inspection, run it on a local system, and contribute to
the project.

Retrieving the Code

SCION runs on Ubuntu 16.04 LTS operating systems. The SCION codebase is
hosted on GitHub (https://github.com/netsec-ethz/scion). The repos-
itory is open-source and users are encouraged to clone a copy of the repository,
test the software, deploy it, and submit pull requests with enhancements.

The main repository contains a detailed README.md file (in the root directory),
which provides all the necessary instructions for installation and system setup.
Users are encouraged to use the most up-to-date version, as the code constantly
evolves and therefore parts of the system may deviate from the information in
this book.

At the time of writing, the directory structure of the source code is laid out
as follows:
‚ docker/ provides a self-contained image for testing SCION builds
‚ endhost/ the parts of the code used on end hosts (e.g., SCION daemon)
‚ go/ contains parts of the system written in GoLang (e.g., border router,

RAINS server, discovery service)
‚ infrastructure/ contains the code of the SCION infrastructure imple-

mented in Python (e.g., beacon server, path server, certificate server, and
border router)

211

https://github.com/netsec-ethz/scion

10 Deployment and Operation

‚ lib/ shared libraries used across SCION components
‚ proto/ Cap’n Proto [218] definitions for SCION packets and messages
‚ sphinx-doc/ definitions for building a Sphinx documentation from the

SCION codebase
‚ sub/ the submodules used by SCION
‚ supervisor/ code for the supervisor engine, which helps run and manage

SCION processes
‚ test/ unit tests and integration tests
‚ tools/ Wireshark plugin to parse SCION packets
‚ topology/ scripts to generate the SCION configuration and topology files;

also includes scripts for running SCION on Mininet

Installing Required Dependencies

The README.md file in the root directory includes instructions for downloading
and installing all needed external dependencies. In general, this involves adding
necessary locations to the user’s PATH, and then running the provided script to
retrieve and install dependencies.

Topology Generation

For development and testing purposes, we have created several complete SCION
topologies to run locally on a commodity machine. Such an infrastructure
provides end-to-end communication across many autonomous systems inside
several isolation domains. The default topology is shown in Figure 10.13. It
includes core ASes, provider-customer links, and peering relationships, both
intra- and inter-ISD.

Note that running all the services and routers of the default topology on a
single host requires at least 4 GB of RAM. Users running SCION with less
RAM may try our smaller alternative topology (topology/Tiny.topo). These
topologies suffice to use basic SCION features, but will not be representative of
Internet-scale topologies.

Before the SCION infrastructure is run locally (see below), the chosen
topology is loaded from disk (topology/Default.topo). From this layout,
configuration files are built for all ASes in the topology. These configuration
files include IP addresses, port numbers, certificates, and process identifiers
through which the process supervisor system will manage the overall status of
SCION processes.

Running SCION Locally

It is possible to start up a complete SCION infrastructure by running all elements
of a selected topology on the local system. This is the fastest and easiest way

212

10.4 How to Try Out SCION

ISD 1

2-23

AS

Prov.-Cust. link

Peering link

Core link

ISD 2

ISD
core

2-25 2-26

2-24

1-16

1-10

1-17

1-181-19

ISD
core

1-11

1-13 1-12

1-14

1-15

2-222-21

Figure 10.13: Default topology used in SCION test and development. ASes in-
side gray areas form the ISD core in each of the ISDs. Bold solid
lines represent links between core ASes, solid lines represent
customer-provider links, and dashed lines are peering links.

to get started; however, users should remember that real SCION networks will
deploy separate physical systems for each of the infrastructure elements. Our
codebase is designed such that each service is bound to an IP address and port,
which allows us to run all services on a single machine (i.e., binding all services
to the loopback interface), or connect physically remote systems provided there
is IP connectivity between them.

The local infrastructure can be started via the scion.sh run command.
This launches one process per infrastructure element, binds each process to
an IP and port, and begins beaconing, path exploration, and path registration.
Once the local infrastructure is up and running, applications may begin using
the SCION daemon for retrieving paths and establishing sockets with servers.
When run on a single machine, all the traffic will be forwarded through several
processes, each of which corresponds to a SCION infrastructure element, before
arriving at its final destination. After testing, the local infrastructure can be
stopped by executing the scion.sh stop command.

The SCION local infrastructure works well for testing different topologies
and ensuring that changes to the codebase work. Due to its loopback-interface-
bound architecture, however, all services will appear to be directly connected
to all other services with no packet loss, very high throughput, and near-zero
latency.

213

10 Deployment and Operation

SCION on Mininet

Mininet is a network emulator that allows emulation of hosts, switches, con-
trollers, and links. We have provided Mininet compatibility for SCION. One
of the main advantages of using Mininet to run SCION is that Mininet link
characteristics (such as latency, bandwidth, and loss) can be configured with
specific values. This enables more comprehensive network modeling and local
testing of SCION components, for example in the presence of link failures or
network attacks.

When running SCION on Mininet, instead of binding each service to the
loopback interface, Mininet will create a new virtual host that will run the
service independently. For example, an AS with a beacon and path server will
be run by two virtual hosts, each running one process (the beacon and path
server, respectively). Each host will be assigned a distinct IP address in the
same broadcast domain (one per AS), and all hosts in an AS will connect to
each other via a virtual switch. The link characteristics for any link can be
specified via a configuration file (see topology/mininet/links.conf for
an example).

One of the caveats of running SCION on Mininet is that due to the additional
emulation layer, more resources are required to run large topologies. The default
topology requires around 8 GB of RAM to run on Mininet on a single host.

Contributing to SCION

The SCION codebase is hosted on GitHub as an open-source repository and
employs the standard GitHub workflow for development. In order to contribute
to the project, a collaborator follows the procedure below:

• Create a fork of the repository in your GitHub account using the GitHub
web interface at https://github.com/netsec-ethz/scion.

• Clone the forked SCION repository into your local development environ-
ment (see also “Retrieving the Code” earlier in this section).

• Develop a new feature, enhancement, or bug fix in your local environment
on a Git branch. When done, push the changes to your fork on GitHub.

• Create a pull request from your fork against the master branch of the
SCION repository using the GitHub web interface.

The pull request with the suggested modifications will then be reviewed by
the SCION team. Once approved, the pull request will be merged into the main
repository.

214

https://github.com/netsec-ethz/scion

10.5 SCION AS Management Framework

10.5 SCION AS Management Framework

SCION offers an intuitive and easy-to-use web interface for setting up and
managing ASes. The SCION AS Management Framework also enables an AS
to establish native and overlay connections to other ASes that support SCION.

The architecture of the framework consists of two main components: a local
component per authority managing an AS (the Local Management Service)
and a coordination component (the SCIONLab Coordination Service), which
mediates between ASes. These components are presented in the following
sections.

Figure 10.14 shows a general overview of the framework. Each AS is man-
aged through a Local Management Service. The Local Management Service
of each AS communicates with other ASes’ management services via the
SCIONLab Coordination Service, for operations such as joining an ISD, send-
ing/approving connection requests, etc. Section 10.5.1 describes the SCIONLab
Coordination Service, and Section 10.5.2 describes the Local Management
Service. The information and screen shot presented in this section reflect the
current state of the system, which is likely to be extended in the future as the
implementation continues to evolve.

P B CPath server Beacon server Certificate serverS Border router

Local AS Manager

Ansible

S P B C

Local AS Manager

Ansible

S P B C

Local AS Manager

Ansible

S P B C

SCIONLab Coordination
Service

Figure 10.14: Deployment architecture overview.

215

10 Deployment and Operation

10.5.1 The SCIONLab Coordination Service

The main role of the SCIONLab Coordination service (also referred to as
the Coordination Service throughout this section) is to enable communication
between instances of Local Management Services that belong to different ASes.
It provides a public interface to obtain an overview of the existing ISDs and
ASes, to facilitate creation of new ASes, and to mediate establishing connections
between ASes. In addition, the coordination service also provides user account
creation facilities for parties who want to register, manage, and deploy SCION.

The SCIONLab Coordination Service also assists with the operation of
SCIONLab, which enables researchers to experiment with the SCION infras-
tructure. Section 10.7 describes SCIONLab in more detail.

The coordination service is not a requirement for running SCION, but merely
facilitates operation during the early stages of deployment. With increasing de-
ployment when more ISPs adopt SCION, the connections between neighboring
ISDs and ASes will be established directly between the administrating parties
of each entity. Therefore, at a later stage we expect that there will be no need
any more for a centralized coordination mechanism, except for the purpose of
SCIONLab.

10.5.2 The Local Management Service

The purpose of the Local Management Service is to provide a web interface to
configure SCION AS components (i.e., border routers and servers). The service
facilitates AS configuration and deployment. The main functionalities offered
by the Local Management Service are as follows:

• sending and receiving requests for joining an existing ISD,
• obtaining a certificate and the TRC from the core AS of the ISD facilitated

by the coordination service,
• defining the local SCION AS components (i.e., local topology),
• generating the configuration to be deployed on the local servers and

border routers.
The web interface provides an overview page of ISDs joined, a detail page

for each ISD with its associated ASes, and an AS overview panel for each
individual AS. The AS overview panel (Figure 10.15) contains information on
SCION servers and border routers for a given AS.

The AS overview panel also allows for easy navigation between the ASes
managed by an administrator by providing a hyperlink to the AS to which a
border router connects. Useful visualization options include the ability to view
the AS topology as a graph, with clickable nodes to navigate between ASes.
Further details on the operation of the local management service for deploying
an AS are discussed in Section 10.6.

216

10.5 SCION AS Management Framework

Figure 10.15: AS overview panel.

10.5.3 Communication between Local Management Service
and SCIONLab Coordination Service

The SCIONLab Coordination Service mediates communication between ASes,
for the purpose of registering a new AS in an ISD and establishing inter-
AS connections. When an AS administrator creates an account using the
SCIONLab Coordination Service, a set of credentials will be created connected
to this account. These credentials will be used by the Local Management
Service to communicate securely with the coordination service. The main
types of interaction between the Local Management Service and the SCIONLab
Coordination Service consist of the following:

• sending requests to join existing ISDs,
• sending connection requests to other ASes,
• sending status updates about the services running in the AS (e.g., path

server, beacon server, certificate server, SIBRA server, etc.),
• receiving status updates about previous requests (pending/rejected/ac-

cepted),
• receiving notifications about new SCION versions.

217

10 Deployment and Operation

10.5.4 Communication Between Local Management Service
and Ansible

Ansible [118] is a platform for configuration management, application deploy-
ment, and task automation. SCION offers a suite of scripts, which are called
playbooks and roles in Ansible’s terminology. These playbooks are responsible
for the deployment of SCION ASes, which requires configuring the involved
hosts with the necessary Ubuntu packages, copying the configuration for each
component of the AS into relevant locations on the designated hosts, cloning
the SCION source code from the GitHub repository, compiling, and finally
starting the processes.

The Local Management Service provides a simple front-end for users to
input their AS configuration. Based on this information, the Local Management
Service generates the necessary AS configuration (e.g., topology, process con-
figuration files) for each server and border router, and finally packages them
together with the already obtained certificate and TRC for the AS. The end
result consists of deployable folder structures and hostfiles, which are used
to perform the deployment. The hostfiles are used by Ansible to deploy each
component onto the appropriate machine by relating the generated folders to
the hosts to deploy.

Once the AS configuration is generated via the Local Management Service,
Ansible deployment can be invoked via the command-line console, from the
same host running the Local Management Service.

10.6 Deploying a New AS

This section describes the steps involved in deploying a new AS.

10.6.1 Obtaining an AS Identifier, Certificate, and TRC

AS certificates are generated by core ASes and are verified with a TRC. Cer-
tificate creation and distribution is facilitated via the SCIONLab coordination
service as follows. The administrator of the AS to be registered sends a request
to join an ISD using its Local Management Service. The request is sent to
the SCIONLab Coordination Service, which then relays it to the core ASes of
the relevant ISD. When a core AS approves the join request, it assigns an AS
Identifier (e.g., AS1-3) to the new AS, creates the certificate, and uploads it
to the Coordination Service, together with the TRC of the ISD, as part of the
response. Upon receiving the response, the new AS obtains its certificate and
the TRC, and saves it in its local database, ready to be copied into the relevant
folders for Ansible to deploy the AS.

218

10.6 Deploying a New AS

10.6.2 Creating the Discovery Service Configuration

The discovery service (described in Section 7.4.6) needs a configuration (more
details in Section 16.3). The following fields are added for the creation of the
discovery service configuration:

• the MTU (maximum transmission unit) for links within the AS, and
• the Overlay Type (e.g., IP, UDP/IPv4, UDP/IPv6) to be used in the AS.

In addition, the AS components need to be defined. For a functional deploy-
ment, at least one entry for each of the following components is necessary:
beacon server, certificate server, path server, SIBRA server, and a border router.
Each of the entries should be declared with the following information:

• a server name, which uniquely identifies the server through a combination
of type prefix, ISD identifier, AS identifier, and instance number;

• a public server address and public server port; and
• a private server address and private server port, in case the component

is running on a host behind a NAT.

The border routers need to be defined with additional information about their
interfaces as follows:

• the ISD-AS identifier of the AS to which they connect,
• the interface identifier,
• the type of the link (e.g., PARENT, CHILD, PEER, CORE) to the neigh-

bor AS,
• the link bandwidth (in kbit/s),
• the link MTU (which might be different from the AS MTU),
• the address and port of the remote border router,
• the address and port it exposes to the remote border router.

When creating the discovery service configuration of an AS, the administrator
is also given the option to enter additional related information. The Local
Management Service lists the addresses of the AS components and allows the
user to specify a hostname for each address, as well as which cloud engine
configuration Ansible should use to configure the machine, in case the host is a
virtual machine in the cloud.

10.6.3 Establishing a Connection to an Existing AS

When an administrator provisions and configures a new border router with
the Local Management Service, this router becomes available to create a new
connection request to the neighboring AS. The connection request contains a
free-text form to provide a motivation for the connection request as well the rele-
vant parameters of the border router and link through which the interconnection
is to happen, such as the following:

219

10 Deployment and Operation

• the address and port of the border router,
• the overlay type,
• the bandwidth, and
• the maximum transmission unit (MTU).

The connection request is then sent to the SCIONLab Coordination Service,
which relays the request to the remote AS. The request can have pending,
accepted, or rejected status. When the connection request is approved by the
remote AS, the initiating AS receives the border router parameters for the
remote side of the connection. The option to update the configuration appears
accordingly. The user can then confirm these settings and deploy the AS
connection by invoking Ansible.

10.6.4 Initiating the Deployment

The deployment is performed via a series of Ansible playbooks corresponding
to the deployment of the current AS. As Ansible playbooks are idempotent for
the same input, no adverse effect arises when an AS is mistakenly deployed
multiple times. After a successful deployment, all the AS components are in
the running state and their status can be observed via the SCION monitoring
application based on Prometheus [159], which is a monitoring service and
timeseries database. When deployed, each AS component exports metrics to
the Prometheus system, whereby the status of each component can be observed.

10.7 The SCIONLab Experimentation Environment

SCIONLab is an ongoing project that enables researchers to quickly and easily
interface with the SCION network and perform experiments. The main idea
of SCIONLab is that participants join the SCION network environment with
their own computation resources and set up their own ASes, which get con-
nected to the actual SCION network. The new ASes will actively participate in
routing inside the SCION network. Consequently, SCIONLab enables realistic
experimentation with the unique properties of SCION.

Figure 10.16 presents an example use case of SCIONLab. A researcher
becomes a SCIONLab user by creating an account via the SCIONLab Coordi-
nation Service, creates ASes (in this example two) in her research institution,
either on dedicated hosts or inside virtual machines, and connects these ASes
to SCIONLab ASes, which are a subset of SCION ASes with the capability to
accept (or auto-accept) connections from SCIONLab users. The user can then
start sending and receiving packets through the SCION network.

The operation of SCIONLab leverages the existing mechanisms and the
framework developed for SCION’s deployment, such as the Local Manage-
ment Service, the SCIONLab Coordination Service, and Ansible. Moreover,

220

10.7 The SCIONLab Experimentation Environment

SCION
Network

SCIONLab User

SCION AS

Prov.-Cust. link

Peering link

Core link

SCIONLab AS

Figure 10.16: SCIONLab’s vision is to form a unique testbed environment for
researchers.

SCIONLab also aims at hosting test versions of SCION, with new and ex-
perimental features, and also to enable SCIONLab users to connect to one
another.

10.7.1 SCIONLab Goals

SCIONLab targets the following goals:

• Novel experiments: SCIONLab enables researchers to actively partici-
pate in the SCION network and perform secure, fine-grained inter-domain
route control, a property which cannot be achieved today by existing
testbed platforms such as PlanetLab [58]. This property is available as a
built-in feature of SCION. The ASes created by the users of SCIONLab
are first-class citizens, which participate actively in the SCION routing
infrastructure.

• Allow organic growth: SCIONLab aims to enable organic growth of
SCION’s deployment by opening up the existing SCION infrastructure
to researchers.

• Low management overhead: SCIONLab is designed to require low
administration overhead. The aim is to enable research personnel in uni-
versities and institutions that adopt SCION to easily join and experiment
with SCIONLab with a minimal amount of human intervention, through
an easy-to-use web interface.

221

10 Deployment and Operation

• Short- and long-lived research experiments: In addition to providing
easy setup, SCIONLab also aims to enable short-lived and long-lived
experiments, depending on the nature of the research. For instance,
SCIONLab allows a researcher to set up his own SCIONLab AS(es) on
her local premises, connect it to the SCION network, perform experiments
and later disconnect. Alternatively, SCIONLab also allows a researcher
at an institute to set up a group of SCION ASes in the institution’s data
center, connect them to the SCION network, and be part of the network
in the long term.

10.7.2 SCIONLab Use Cases

The following use cases are envisioned to be supported by SCIONLab.

Education

SCION’s path transparency and control can help to teach networking concepts
to students. The unpredictability of current-generation routing architectures
(e.g., due to load balancing or traffic engineering), prevents students from
clearly visualizing network paths. Network-monitoring and troubleshooting
tools such as Traceroute do not always provide the correct paths [15], and often
require hacks to get around the infrastructure and to manipulate packets at lower
layers.

With SCION’s source-selected paths, teachers and students gain explicit
control over the ASes traversed by a packet. The routing information embedded
in the packet helps users to explore and utilize the network topology.

Moreover, many existing routing protocols do not allow test domains to
actively participate in the control plane. With SCION’s isolation and scalability
properties, the nodes in SCIONLab can also fully participate in the routing. This
creates an experimentation ground for participation in the SCION inter-domain
routing protocol, which is not possible in today’s testbed platforms such as
PlanetLab.

DDoS Defense Research

One of SCION’s extensions is its bandwidth reservation architecture SIBRA
(see Chapter 11). SIBRA allows SCIONLab users to obtain guaranteed quality
of service on specified paths, which in turn enables reproducible network
experiments. With SCIONLab, researchers can also leverage SIBRA to test
DDoS attacks and defenses.

222

10.8 Example: Life of a SCION Data Packet

Multipath Communication Research

The current Internet does not natively support multipath communication at the
network layer. The main problem today is that there is no deployed architecture
that provides a meaningful multitude of path choices, on the order of a dozen
diverse end-to-end paths. Although recent research has enabled multipath at
the transport layer (MPTCP [207]), its use requires endpoints to enable this
modified transport in their network stacks. To make matters more complex,
MPTCP may not work as expected if middleboxes on the network path interfere
with TCP headers. Currently, multipath researchers design and test features in
datacenters [206] or virtualized environments, which precludes experimenting
with multipath communication in a real-world context.

The SCION streaming protocol (SSP) socket supports multipath by default
(Section 9.4), and enables a wide range of multipath experiments. With the use
of SCIONLab, users can design experiments involving multipath communica-
tion.

Building SCION Extensions

As SCION is designed to be modular, new extensions can be written to extend
its functionality. This design enables SCIONLab users to perform rapid proto-
typing of new network protocols that can leverage SCION’s features. They can
achieve this by modifying the open-source SCION codebase, and deploying
this version on their hosts.

10.8 Example: Life of a SCION Data Packet

We describe the complete life cycle of a SCION packet: crafted at its source
host, passing through a number of routers and middleboxes, and finally reaching
its destination host. To this end, we assume that both source and destination
are native SCION hosts (i.e., they both run a native SCION network stack). We
note that the following description is also valid in the case where a SCION-IP
gateway connects non-SCION hosts (as described in Section 10.3) and sends
SCION packets on behalf of non-SCION hosts.

We start off with an intra-ISD case, i.e., all communication happens within a
single ISD. We later extend this simplified example to the inter-ISD case.

10.8.1 Intra-ISD Case

Considering the topology depicted in Figure 10.17, we follow a SCION packet
sent from B to H and we observe how it will be processed by each router on
the path. We show simplified snapshots of the packet header after each such

223

10 Deployment and Operation

processing step. The packet header figures below show the most relevant
information of the header, i.e., the SCION path, and IP encapsulation for local
communication.

H

B

client subnet(1,3,5.0.0.2)

h.com

AS 3

ISD 1

AS 1

AS 2 C

F1 F2

E1

(1,3,5.0.0.7)

(1,2,3.4.5.6)

(1,2,3.4.5.17)

i2a
i1a i1b

i3a

G

(1,3,5.0.0.34)

D E2

Figure 10.17: Sample topology to illustrate the intra-ISD life cycle of a SCION
packet. AS 1 is a core AS of ISD 1, and AS 2 and AS 3 are non-
core ASes. The red part of the path indicates a traditional IP
connection between AS 1 and AS 3.

End host B first queries its local RAINS service (see Chapter 6) for the SCION
address of h.com, which B obtains as (1,3,5.0.0.7). Next, B queries its local
path server for a down-segment to AS 3, in which destination host H is located.
The local path server (possibly after connecting to a core path server) returns up
to k down-segments from the ISD core down to AS 3 (where the default value of
k “ 5). Figure 10.17 shows only a single path. Moreover, the local path server
returns up to k up-segments from AS 2 to the ISD core. A path segment consists
of the interfaces that each AS uses internally to refer to its inter-AS links. The
interfaces have no significance outside the AS.

End host B selects and combines one up-segment with one down-segment,
namely (‚,i2a)(i1a,‚) up and (‚,i1b)(i3a,‚) down. These two seg-
ments are combined to obtain an end-to-end forwarding path from B’s AS
to the destination AS. In our example, the resulting SCION forwarding path
is IF1(‚,i2a)(i1a,‚) IF2(‚,i1b)(i3a,‚). It consists of two info fields,
IF1 and IF2, and a series of hop fields that carry the ingress and egress inter-
faces of each AS, as described in Section 15.1.3.

224

10.8 Example: Life of a SCION Data Packet

1) BÑ C

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(
::::
‚,i2a)(i1a,‚)

IF2(‚,i1b)(i3a,‚)

IP
SRC=B@3.4.5.6

DST=C@3.4.5.17

Eth SRC=B, DST=C

2) CÑ D

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(‚,i2a)(
:::::
i1a,‚)

IF2(‚,i1b)(i3a,‚)

Eth SRC=C, DST=D

3) DÑ E2

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(‚,i2a)(i1a,‚)
IF2(

::::
‚,i1b)(i3a,‚)

IP
SRC=D
DST=E2

Eth SRC=D, DST=E2

4) E2Ñ E1

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(‚,i2a)(i1a,‚)
IF2(‚,i1b)(

:::::
i3a,‚)

IP
SRC=E2
DST=F2@5.0.0.34

Eth SRC=E2, DST=E1

5) E1Ñ F1

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(‚,i2a)(i1a,‚)
IF2(‚,i1b)(

:::::
i3a,‚)

IP
SRC=E2
DST=F2@5.0.0.34

Eth SRC=E1, DST=F1

6) F1Ñ F2

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(‚,i2a)(i1a,‚)
IF2(‚,i1b)(

:::::
i3a,‚)

IP
SRC=E2
DST=F2@5.0.0.34

Eth SRC=F1, DST=F2

7) F2Ñ F1

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(‚,i2a)(i1a,‚)
IF2(‚,i1b)(

:::::
i3a,‚)

IP
SRC=F2@5.0.0.34

DST=H@5.0.0.7

Eth SRC=F2, DST=F1

8) F1Ñ G

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(‚,i2a)(i1a,‚)
IF2(‚,i1b)(

:::::
i3a,‚)

IP
SRC=F2@5.0.0.34

DST=H@5.0.0.7

Eth SRC=F1, DST=G

225

10 Deployment and Operation

9) GÑ H

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(‚,i2a)(i1a,‚)
IF2(‚,i1b)(

:::::
i3a,‚)

IP
SRC=F2@5.0.0.34

DST=H@5.0.0.7

Eth SRC=G, DST=H

Step-by-Step Explanations

We next explain the packet header modifications at each router, by using the
table above. Regarding the notation used in the table, each SRC and DST entry
should be read as router (or host) followed by its address, separated by the @
symbol.

1. BÑ C SCION-enabled end host B creates a new SCION packet destined
for H with payload P. B learns from the SCION discovery service (see
Section 7.4.6) the mapping from interface fields to IP addresses of the
corresponding border routers. For example, the interface i2a (as con-
tained in the combined forwarding path) is mapped to border router C’s
IP address 3.4.5.17. Based on this information, B knows that it needs
to send its packets (for the chosen forwarding path) to border router C,
which will then consider the SCION path that B has added to the packet’s
SCION header. B adds a temporary IP header for the local delivery to C,
utilizing AS 2’s internal routing protocol.
The info field pointer in the SCION header is set to IF1, which is indi-
cated in the packet header figures above by a line below it. The pointer to
the current hop field is indicated by a

::::
wave below it. Once the information

in the path is consumed, the pointers are moved forward.

2. CÑ D Router C inspects the SCION header and considers the info field
of the specified SCION path that is pointed at by the current info field
pointer. In this case, it is the first info field IF1 with its first hop field,
which instructs the router to forward the packet on its interface i2a.
After reading the current hop field, C moves the pointer forward by one
position.
Note that, at this point, no IP header is necessary, since the routers C and
D are directly connected.

3. DÑ E2 When receiving the packet, router D checks whether the packet
has been received through the ingress interface i1a as specified by the
current hop field. Otherwise, the packet is dropped by D. The router

226

10.8 Example: Life of a SCION Data Packet

notices that it has consumed the last hop field of the current path segment,
and hence moves the pointer of the current info field to the next info field.
There, it starts processing the first hop field, which instructs the router
to perform intra-domain routing to transport the packet to the specified
egress interface i1b, which is on router E2.

4. E2Ñ E1 The dual setup with E1/E2 and F1/F2 models a router-on-a-
stick configuration, in which AS 1 and AS 3 are connected through BGP-
speaking IP routers E1 and F1. This rather conservative setup guarantees
that legacy IP traffic is not affected if one of the SCION routers (E2 or
F2) fails.
E2 inspects the current hop field in the SCION header, uses interface
i1b to forward the packet to F2 (which is part of a static configuration
between AS 1 and AS 3), and moves the current hop-field pointer forward.
It adds an IP header to reach F2.

5. E1Ñ F1 Router E1 forwards the IP packet to the IP border router of
AS 3, according to its IP forwarding table.

6. F1Ñ F2 Router F1 performs intra-domain forwarding of the IP packet
to F2.

7. F2Ñ F1 SCION router F2 detects the SCION header and realizes that
the packet has reached the last hop in its SCION path. Therefore, instead
of stepping up the pointers to the current info or hop field, F2 inspects the
SCION destination address and extracts the end-host address 5.0.0.7.
It creates a fresh IP header with this address as destination and with F2

as source. The intra-domain forwarding will first send the IP packet to
router F1.

8. F1Ñ G Router F1 continues the intra-domain forwarding and sends the
packet to the next router on the path to H, which in this case is G.

9. GÑ H Router G delivers the packet to end host H.
When H sends an answer to the sender, it will flip the source and destination

addresses in the SCION header, reverse the SCION path, and set the pointers to
the info and hop fields to the beginning. H sends a response via border router
F2, which has been used for the inbound direction. The address of F2 can be
learned either from the source IP address of the inbound packet or from the
SCION discovery service.

10.8.2 Intra-ISD Case with Private Addresses Behind a NAT

We next consider a slightly modified topology as depicted in Figure 10.18,
where we assume that SCION host A sends a packet to H. The packet header

227

10 Deployment and Operation

will be processed by each router on the path, as before, but here additionally
with a network address translation (NAT) step at router B.

H

A

client subnet(1,3,5.0.0.2)

h.com

AS 3

B

ISD 1

(1,2,3.4.5.6)

AS 1

AS 2
C

client subnet

F1 F2

E1

(1,3,5.0.0.7)

(1,2,192.168.1.1)

(1,2,192.168.1.3)
NAT

(1,2,3.4.5.17)

i2a
i1a i1b

i3a

G

(1,3,5.0.0.34)

D E2

Figure 10.18: Sample topology (similar to that of Figure 10.17) with the differ-
ence that the source host resides in a subnet, which uses network
address translation (NAT) to connect to AS 2.

As in the case before, end host A first queries its local RAINS service for
the SCION address of h.com, which A obtains as (1,3,5.0.0.7). In the
following, we will only show the differences to the case in Section 10.8.1
without NAT. These two differences occur in the first two hops.

1) AÑ B

TCP PS=22741, PD=80

SC

SRC=A@(1,2,192.168.1.3)

DST=H@(1,3,5.0.0.7)

PATH=IF1(
::::
‚,i2a)(i1a,‚)

IF2(‚,i1b)(i3a,‚)

IP
SRC=A@192.168.1.3

DST=C@3.4.5.17

Eth SRC=A, DST=B

2) BÑ C

TCP PS=35417, PD=80

SC

SRC=B@(1,2,3.4.5.6)

DST=H@(1,3,5.0.0.7)

PATH=IF1(
::::
‚,i2a)(i1a,‚)

IF2(‚,i1b)(i3a,‚)

IP
SRC=B@3.4.5.6

DST=C@3.4.5.17

Eth SRC=B, DST=C

Step-by-Step Explanations

1. AÑ B SCION-enabled end host A creates a new SCION packet destined
for H with payload P. A learns from the SCION discovery service that
it needs to contact the border router C that will consider the SCION
path that A added to the SCION header of the packet. The packet’s IP

228

10.8 Example: Life of a SCION Data Packet

header thus points to router C. To reach border router C, the packet is
first sent to router B, which is the default gateway for host A. The intra-
domain forwarding inside AS 2 will then deliver the packet to router C (as
explained in Step 2).
The SCION header has its pointer to the current info field set to IF1

(which is again indicated in the packet header figures above with a line,
and the pointer to the current hop field is again indicated with a

:::::
wave).

Once the information in the path is consumed, the pointers are moved
forward.

2. BÑ C Router B performs network address translation (NAT) since end
host A resides in a sub-network with a private address space. More pre-
cisely, router B replaces A’s private IP address with B’s public IP address,
and assigns a fresh transport-layer port number. Router B maintains a
NAT table as follows:

NAT table at B
dst address dst port temp. src port src port src address

(1,3,5.0.0.7) 80 35417 22741 (1,2,192.168.1.3)
...

...
...

...
...

It is important that the destination address of the NAT entry is the SCION
address of H; the IP address of H or the IP address of C are not sufficient
as they might not uniquely identify answers from H: The IP address of H
may not have significance outside AS 3, and the IP address of C may be
useless if the reverse path(s) from H to A do not go through router C.

When H sends an answer to the sender, it will flip the source and destination
addresses in the SCION header, reverse the SCION path, and set the pointers
to the info and hop fields to the beginning. H sends a response via F2, which
has been used for the inbound direction. Router B will translate the addresses
accordingly and deliver the packet to A.

10.8.3 Inter-ISD Case

We next discuss the case in which a SCION packet travels from one ISD to
another, as depicted in Figure 10.19.

This inter-ISD case is slightly more complex than the previous case inside an
ISD. The increased complexity is not due to the forwarding process (it works
exactly as before with a longer path descriptor), but it comes with a slightly
more complex path resolution process, which we will explain next.

The source end host A requests a path to the destination AS, AS 4 in ISD 2,
from its local path server. The local path server may have a cached path to the
destination AS, or requests one from the core path server located in its ISD
core, AS 1. In this case, the core path server returns up to k down-segments. As
the destination AS resides within a different ISD, the core path server requests

229

10 Deployment and Operation

J

B
client subnet(2,4,5.0.0.2)

j.com

ISD 2

AS 4

ISD 1

(1,2,3.4.5.6)

AS 3
AS 1

AS 2
C

(2,4,5.0.0.1)

F
E

G
D

core link

H

I
(2,4,5.0.0.7)

Figure 10.19: Sample topology to illustrate the inter-ISD life cycle of a SCION
packet.

the down-segments from the remote (destination) ISD’s core path server and
returns these segments to the local path server, together with core-segments
connecting ISD 1 to ISD 2.

10.9 SCION Path Policy

SCION can support a rich set of path policies, providing ISPs with fine-grained
control over permissible paths. This is an important property, as ISPs need
mechanisms that implement their traffic flow policies to match their business
model. In today’s Internet, ISPs define their routing policies through BGP; so
in this section, we will highlight the differences between BGP routing policies
and SCION path policies.

Before we discuss the differences in more detail, we would like to make
an observation. BGP is sometimes described as the gold standard for routing
policies. However, BGP is mainly able to express destination-based policies,
but no general source-based policy. It might be concluded from this that current
Internet routing policies have evolved towards what is expressible by BGP, and
probably not that BGP has evolved to accommodate the most-desired routing
policies. In fact, we anticipate that familiarity with SCION path policies may
raise awareness of BGP’s inadequate expressiveness.

Three fundamental points complicate the definition of SCION path policies.
First, because SCION’s path exploration is fundamentally different from BGP,
policy construction differs from that in today’s Internet. Second, announcing
multiple paths creates a challenge (compared to the current situation where

230

10.9 SCION Path Policy

ISPs only need to approve and provide a single path to each destination). To our
knowledge, there are currently no multipath policy definitions available. Third,
client-based path selection can disrupt an ISP’s business model, as a client may
select a more expensive path, incurring a higher cost for the ISP.

In the remainder of this section, we will first explain the fundamental dif-
ferences between BGP routing policy and SCION path policy in terms of
expressiveness. We will then describe the SCION path policy framework, il-
lustrate with specific examples how BGP policies can be translated, and what
policies SCION can naturally express that BGP cannot. Finally, we discuss how
client-based path selection interacts with ISP-based traffic engineering.

10.9.1 Differences Between SCION Path Policy and BGP
Routing Policy

Path exploration in SCION starts from core ASes and extends paths towards
the leaf ASes — whereas paths in BGP are constructed from leaf ASes towards
all other ASes. This difference suggests that SCION can express a different set
of path policies from BGP (but as we describe below, beacon extensions and
hop-field encryption can enable a full set of policies).

Example. To illustrate the differences between BGP routing policies and
SCION path policies, we present an example in Figure 10.20. In BGP, the
routing updates originate at the destination and are flooded through the network.
For instance, AS E sends a BGP update message to its provider D, which
further disseminates it upstream to A and C. Similarly, C further disseminates
the update to A and B, and B sends it on to A. At this point, A can decide how
E will be reached. Traffic follows the reverse path of the updates, so traffic
destined for E can traverse path A-D-E, or path A-C-D-E, or path A-B-C-D-E.
This example demonstrates the limitation that an AS can only control over
which downstream path traffic is sent, but has no upstream control. Specifically,
traffic destined for E cannot be controlled by E; it will flow over the link that A
selects. Moreover, BGP cannot express source-based policies (except the next
hop to which an update is sent) as we are going to illustrate later in this section.

Due to the bidirectional nature of SCION paths, simply expressible policies
are neither source nor destination based. Instead, SCION policies relate to the
paths towards the ISD core. Consider that AS A in Figure 10.20 is part of the
ISD core and initiates PCBs that it sends to B, C, and D. B and C continue to
send the PCB to D. D can now decide which beacon to send on to E based on
its path policy. Since SCION is a multipath architecture, D would most likely
forward the three PCBs, but to illustrate the policy options we assume it only
sends a single PCB. This PCB represents both the path towards the destination
(used as a down-segment), as well as the path from the source (used as an

231

10 Deployment and Operation

A

B

C
D

E

(a) BGP

A

B

C
D

E

(b) SCION

ISD

ISD core

A

E

A

A

A–B

A–C

A–B–C

A–C–D

A–B–C–D

A–D

E–D

E–D

E–D–C

E–D–C

E–D–C–B

Figure 10.20: Simple network topology and two path exploration approaches:
BGP (destination emits BGP update) and SCION (ISD core emits
beacons).

up-segment). Thus, it is challenging to compare the policy expressiveness of
SCION directly with that of BGP.

Another difference is that BGP routing policies can be based on IP prefixes,
but since in the SCION data plane neither the source nor destination address
influences inter-domain forwarding, the end host addresses in the SCION
header can be selected from private address space (e.g., RFC 1918 [210]).
Consequently, SCION path policies are purely based on ASes and ISDs.

10.9.2 Approaches to Implementing Path Policies

SCION offers three approaches to implementing path policies:

• Beaconing control: An AS decides which beacons to send on and which
peering links to add to the beacon. This enables implementation of a
first basic level of path policy. An AS can decide which upstream ASes
should be avoided when propagating beacons to downstream ASes, or
which path properties are preferred (see Section 7.1.4).

• Explicit path policy transmitted as beacon extension: An AS adds
information to the PCB to explicitly indicate which paths are permissi-
ble. This can include a list of downstream ASes which are (or are not)
permitted to use the PCB’s path. The granularity of path policy can be
fine grained to the level of per-link policies, so even peering links can be

232

10.9 SCION Path Policy

annotated with a policy in the PCB (see Section 15.3.4). Downstream
ASes that violate usage policy are accountable for their actions as they
sign the PCB and a policy violation is detectable when the path is regis-
tered. When the path is only used against the explicit path policy but not
registered, detection is more challenging. To detect such misuse, an AS
can monitor hop fields (HFs) used in traffic and in the case of HFs that
were not registered by any of the downstream ASes, it can verify whether
the source or destination AS is allowed to use the path. Furthermore, vio-
lation by an intermediate AS can be detected by tracing the intermediate
ASes in a sequence of HFs and verifying compliance with the explicit
path policy. Although detection requires operational effort, it is likely to
be a sufficient deterrent for misbehavior.

• Hop field encryption with explicit path activation: An AS that intends
to encode more sophisticated policies can encrypt the hop field in the
PCB to make it unavailable unless it is activated by the end domain.
Activation requires sending a special packet through the network with the
entire end-to-end path, so that on-path ASes can inspect and activate the
path by decrypting the hop field if they permit the path. A unique policy
identifier can be added to the PCB to enable end domains to optimize
which paths are attempted to be activated.

At the time of printing, the current implementation of SCION supports basic
beaconing control and explicit policies, but not yet explicit path activation,
which will be included in a future release.

We observe that if an ISP only announces encrypted hop fields that require
explicit path activation, end-to-end path setup is slowed down and in the worst
case requires several attempts to find a working path. We thus require that each
AS must make at least one upstream path available, called the default path,
that supports arbitrary end-to-end paths. This ensures quick establishment of
an end-to-end path that is supported by all upstream ASes. To achieve high
availability and rapid failover, two disjoint paths that support arbitrary end-to-
end paths should be made available. The multipath system will then continue
to seek additional paths as the connection progresses, finding new paths that
optimize latency, bandwidth, loss rate, ASes traversed, etc.

10.9.3 Sample Path Policies

To demonstrate how one can express path policies in SCION, we will consider
some popular routing policies that are used in BGP, and present some policies
that cannot be expressed in BGP. For the current BGP policies, we discuss
the policies presented by Gill et al. [94]: the GR model, next-hop routing,
consistent export, and most stable path. We also discuss hot-potato routing, an
example of a complex BGP policy, and finally a source-based policy that BGP
cannot express.

233

10 Deployment and Operation

Gao-Rexford Model

The Gao-Rexford (GR) model [91] captures BGP routing policies that are
believed to be realistic due to commercial relationships between ASes. A policy
is compliant with the GR model if it implements the two following sub-policies:

• GR preference: The preference policy is based on the observation that
ISPs want to maximize profits: when an ISP has a choice of where to
send traffic to, then the preferred order is first towards a customer, second
over a peering link, or finally to a transit provider. The reason is that
traffic sent to a customer earns a profit from the customer, traffic sent over
a peering link has zero marginal cost, but traffic sent to a transit provider
incurs a cost. In BGP, the way these preferences are expressed is through
the LocalPref setting, which is assigned a different value depending on
whether the update was received from a customer, a peering link, or a
provider. Gill et al. report that over 85% of ISPs utilize this policy [94].
In SCION, paths are usually bidirectional, so once a path is announced, it
can be used in both directions and it thus incurs costs if it is used for traffic
towards a provider. Moreover, SCION traffic makes use of multipath
communication, and thus a multitude of paths are simultaneously used.
We discuss how an ISP can influence the flow of traffic to maximize its
revenue in Section 10.9.5.

• GR export: The export policy is needed for route stability. Customer
routes are announced everywhere, but routes learnt over peer and provider
links are only announced to the customer. This policy ensures valley-
free routing [91], where traffic never flows “down” the AS hierarchy to a
customer and back “up” towards the destination. By following this simple
policy, Gao and Rexford were able to show that BGP converges [91]. Gill
et al. find that over 70% of ISPs enable this policy.
Since SCION has no convergence problems, this policy is not required.
However, domains can still ensure that they do not re-send PCBs to any
of their providers and peers.

Next-Hop Routing Policy

Gill et al. conducted a study where they investigate the various BGP routing
policies used in practice [94]. It was found that the majority of ISPs use
simple routing policies that are easy to configure and maintain. For instance,
around 60% of ISPs use a next-hop routing policy, which implies that the BGP
LocalPref setting is solely based on the next hop (i.e., the incoming link of
the BGP update) and the destination, and not on the intermediate path. This
creates a predictable, simple routing policy, and enables implementation of the
GR preference policy.

234

10.9 SCION Path Policy

SCION enables control over which PCBs are sent to which next-hop ASes,
allowing for policies that take the previous and next hop into account. As
SCION paths are bidirectional, both source- and destination-based policies can
be expressed, rather than only destination-based policies as in BGP.

Consistent Export Routing

Gill et al. also report that consistent export routing is a popular policy, with 65%
of the ISPs deploying it [94]. In this policy, if a route with LocalPref“ ` is
exported, then routes with LocalPrefě ` are also exported. This represents a
monotonicity property, which again leads to predictable behavior.

The reason why policies in BGP need to be simple and predictable lies in the
danger of connectivity loss in case a link fails or another ISP changes its policy
and withdraws a route. With complex policies, outages and loss of connectivity
are common [54, 103, 172, 243]. SCION does not need such a rule — given its
path exploration mechanism and the default path, which always guarantees at
least one working path.

Route Along the Most Stable Path

BGP supports a preference for more stable paths, which is expressed based on
the age of a path. Such an approach is not critical in SCION as several paths
can be active simultaneously, and one of them can be a path that has been stable
over an extended time period.

Hot-Potato Routing

Hot-potato routing denotes the strategy of sending a packet off as quickly as
possible to the next AS, limiting the amount of resources consumed within the
AS. This strategy can lead to asymmetric paths, as packets traveling from A
to B may thus take a different path than packets traveling from B to A. Since
SCION defines the specific ingress and egress links, hot-potato routing cannot
be achieved by standard SCION. However, if two neighboring ISPs do want to
perform hot-potato routing, they can assign the same interface identifier to two
different links, and send packets across the closer link. This approach would
sacrifice opportunities for multipath communication, so we do not expect it to
be used in practice.

Example of Complex BGP Policy

Consider the example depicted in Figure 10.21, where B is an educational
network that only permits traffic with either a source or a destination that is
also inside an educational network. Since F is an educational network, traffic

235

10 Deployment and Operation

destined for it can traverse B. In BGP, D learns the path originated by F (i.e.,
F-E-D), and the path originated by G (i.e., G-E-D). D has a choice of which
links to propagate the updates to. Since F is an educational network, its update
can be sent to both B and C, but G is a corporate network so its update can
only be sent on to C. Traffic follows the reverse path of the updates, so traffic
destined for F can come to D from B or C, but traffic destined for G cannot
flow across link B-D.

Such a policy can be expressed in SCION, although the path exploration
process is conducted in a top-down manner. Considering A is in the ISD
core, then D receives PCBs with paths A-B and A-C, extends them (by adding
information about itself), and propagates them downstream to E. The beacons
sent contain a path policy extension, where D states that only F can use the
path A-B-D. This policy is enforced at several points:

• E, on learning D’s statement, does not send the beacon containing B to
G.

• Core path servers refuse path registrations attempted by entities other
than permitted ASes (i.e., other than F in our example).

• D can sample traffic to check whether the policy is violated (since SCION
addresses contain AS identifiers).

A

CB

D

E

GF

Figure 10.21: Network topology, where AS B represents an educational network
(e.g., Internet2) that provides transit only to educational entities.
AS F is an educational institution, which is allowed to receive
traffic through B. All other entities are commercial ASes. In the
case of SCION, we consider AS A to be a core AS.

Source-Based Downstream Path Policy

For a given destination, BGP can only announce a single update, preventing
a diversified routing policy based on the source of the packet. In SCION,
path exploration is realized top-down and an AS receives several beacons with

236

10.9 SCION Path Policy

diverse paths. Moreover, a provider has better control in SCION over paths
learned by its customers.

For instance, consider the topology in Figure 10.21. Using BGP, D must
select which path to A it will forward to E, either D-B-A or D-C-A. Even if E
knew of both paths, all traffic destined for A would either traverse B or C. Thus,
E has no choice but to forward the relevant BGP update for A on to F or G —
it cannot have F use path E-D-B-A and G use path E-D-C-A.

With SCION, both F and G can use paths through B or C, as long as D has
sent one beacon with the path A-B-D and another with A-C-D to E, and E in
turn has extended the beacons and passed them to F and G. However, if it is
desired, D can decide not to reveal the connection with B (if, for instance, it is
a backup link), and can keep sending to E only beacons with the path A-C-D.
Similarly, if E has beacons with the two paths, it can send both PCBs (i.e.,
traversing B and C) to F , and send only one PCB to G, the one traversing C.

10.9.4 Secrecy of Routing Policies

Routing policies are often sensitive information for an ISP’s business. ISPs
thus guard their policies, even though the actual routing decisions leak some
information about their policy. An important question is whether SCION
leaks more policy information than BGP. In the case of explicit path policies,
the policy is directly published in the PCB. We anticipate that non-sensitive
policies will be published this way. Standard beaconing also discloses policy
information, and as a natural consequence of multipath path discovery, SCION
discloses more information than BGP — as any multipath routing protocol
would naturally disclose more information. If ISPs were to use encrypted hop
fields to hide their policy (even though encrypted hop fields require a higher
overhead for path setup), then extensive probing of paths with encrypted hop
fields would reveal the policy. However, in that case an ISP can monitor how
much probing is performed and which paths it intends to permit.

So in summary, despite SCION revealing more policy information than BGP,
ISPs can monitor and control the amount of disclosed information. Much of the
revealed information is a fundamental consequence of multipath communication.
We believe that this is a worthwhile tradeoff to make, given the advantages
offered by multipath communication.

10.9.5 Conflict Between End-Host Path Control and ISPs’
Traffic Flow Policies

SCION end hosts have more control over paths than in today’s Internet. This
can represent a problem for ISPs, as clients may select communication paths
that incur a higher cost than a default path.

237

10 Deployment and Operation

In the same vein, multipath communication is fundamentally at odds with
ISPs’ single-path-routing-along-cheapest-link policy. If multiple paths are
made available, then naturally some of them will be more expensive than the
cheapest one. Consequently, ISPs may incur a higher cost to support multipath
communication.

To resolve these issues, ISPs can enforce their traffic flow policies by making
use of bandwidth allocation to guide flows towards less costly paths by providing
higher available bandwidth. The multipath path exploration mechanism will
continuously optimize the set of paths used for the communication, and thus
the paths and traffic will naturally migrate towards paths with more available
bandwidth.

A CB

D E

G

F

H I

Figure 10.22: The vertical links indicate provider-customer relationships, and
the horizontal links indicate peering relationships. ASes A, B,
and C are part of the ISD core.

There is, however, a challenge: Consider Figure 10.22, in which a host g in
AS G desires to communicate with host h in AS H. If host g makes use of the
peering link D-E, then ASes D and E save money as the traffic does not flow
through their respective providers A and B. SCION’s path control, however,
enables hosts g and h to select the path G-D-A-B-E-H for their communication,
which would incur a cost for D and E. D and E cannot easily force the sender to
use the peering link, as host g needs to be able to use the path D-A as a backup
path in case the peering link fails, or also if it wants to communicate with host i
in AS I.6

The bandwidth control we describe above only helps in a limited fashion, as
D needs to provide ample bandwidth on link D-A for communication with the
remainder of the network.

We see the following approaches to how D and E can achieve their desired
path policy outcome:

6A similar example can be seen in Figure 10.21. Consider a host in AS F creating a path to
a host in AS G, merging up- and down-segments. A non-malicious host would create path
F-E-G, but a malicious host can create path F-E-D-E-G to harm E (or help D) by incurring
additional cost for E.

238

10.9 SCION Path Policy

• An ISP could inspect the source and destination and decide on the amount
of bandwidth granted for each flow. Unfortunately, this approach incurs
high overhead on the router and is thus not recommended.

• Hop-field encryption with explicit path activation can be used to deny
paths that should instead traverse a peering link. Since this approach
imposes additional overhead for path establishment, its use is not recom-
mended for the majority of traffic. Perhaps a hybrid approach can be used,
where best-effort traffic can obtain a small amount of bandwidth, and ad-
ditional bandwidth is only available for activated paths or SIBRA-based
paths described in Chapter 11.

• An ISP may charge more for SCION than for a traditional Internet
connection. As domains obtain benefits, such as obtaining better service
thanks to multipath communication and path control, they should be
willing to pay a higher price.

• Per-path pricing can be used to accurately reflect the cost of each path.
We are working on a pricing architecture for SCION, which will become
available in a future version.

From our interactions with ISPs, we have made the following observations.
ISPs’ cost structures have changed over the past decade, so the cost is largely
due to the fixed costs of maintaining the infrastructure, while the marginal
cost of sending a packet is becoming negligible. Evidence for this observa-
tion is that transit costs have greatly declined over the past decade, and that
utilization-based billing is being replaced with alternate pricing models. An-
other observation is that in modern networks, the path quality is inversely
correlated with the price, so the best path is often also the cheapest. Therefore,
rational senders will automatically pick the best paths and thus also reduce the
ISPs’ costs.

In conclusion, while there is a conflict between end-host path control and
ISPs’ traffic flow policies, SCION offers mechanisms to mitigate the conflict.
However, based on the economics of modern ISP networks, the conflict seems
to be vanishing. Consequently, we anticipate that clients will be able to benefit
from path control and multipath communication without incurring higher cost.

239

Part III

Extensions

241

11 SIBRA

ADRIAN PERRIG, RAPHAEL M. REISCHUK,
STEPHEN SHIRLEY, PAWEL SZALACHOWSKI

This chapter presents SIBRA, the Scalable Internet Bandwidth Reservation
Architecture, which enables global bandwidth resource allocation. End hosts can
use resource allocations to obtain end-to-end bandwidth guarantees to defend
against DDoS attacks, which continue to be a menace on today’s Internet.

SIBRA provides scalable inter-domain resource allocations and botnet-size
independence — two important properties that prior DDoS defense systems
could not achieve. Intuitively, botnet-size independence enables two end hosts
to set up communication regardless of the size of distributed botnets. SIBRA
thus ends the arms race between DDoS attackers and defenders.

SIBRA can be implemented with per-flow stateless fastpath operations on
transit routers for reservation renewal, flow monitoring, and policing, which
results in highly efficient data-plane operation on core routers. SIBRA en-
ables dynamic inter-domain leased lines (DILLs), which offer new business
opportunities for ISPs.

The text in this chapter is based on the paper “SIBRA: Scalable Internet
Bandwidth Reservation Architecture” by Cristina Basescu, Raphael M. Reis-
chuk, Pawel Szalachowski, Adrian Perrig, Yao Zhang, Hsu-Chun Hsiao, Ayumu
Kubota, and Jumpei Urakawa, which was published in the Proceedings of the
Symposium on Network and Distributed System Security (NDSS), 2016 [22].
Some concepts have been revised or extended, such as bandwidth allocation
among core ASes.

Chapter Contents

11.1 Motivation and Introduction 244

11.2 Goals and Adversary Model . 245

11.3 Design Overview . 247

11.4 SIBRA Core Paths . 250

11.5 SIBRA Steady Paths . 259

243

11 SIBRA

11.6 SIBRA Ephemeral Paths . 261

11.7 Priority Traffic Monitoring and Policing 268

11.8 Use Cases . 272

11.9 Discussion . 273

11.10 Further Reading . 276

11.1 Motivation and Introduction

A recent discussion among network administrators on the NANOG mailing
list [187] pointedly reflects the current state of DDoS attacks and the trick-
iness of suitable defenses: defenses typically perform traffic scrubbing in
upstream ASes or in the cloud, but attacks surpassing 20–40 Gbps can still
overwhelm the upstream link bandwidth and cause congestion that traffic scrub-
bing cannot handle. Amplification attacks of up to 400 Gbps [202] and direct,
non-amplified attacks from a large army of Internet-of-Things (IoT) devices
of up to 620 Gbps [140] and 1,156 Gbps [188] have been witnessed recently,
plaguing websites and critical infrastructures, without any viable solution on the
horizon that can defend the network against such large-scale flooding attacks.

Quality of Service (QoS) architectures at different granularities, such as
IntServ [254] and DiffServ [16], fail to provide end-to-end traffic guarantees
at Internet scale: with billions of flows traversing the network core, routers
cannot handle the per-flow state required by IntServ, whereas the behavior
of DiffServ’s traffic classification across different domains cannot guarantee
consistent end-to-end connectivity.

Network capabilities [10, 150, 183, 258, 260] are not effective against at-
tacks such as Coremelt [231] that build on legitimate low-bandwidth flows to
swamp core network links. FLoc [150] in particular considers bot-contaminated
domains, but it is ineffective in the case of dispersed botnets.

Fair resource reservation mechanisms (per source [181], per flow [65, 254,
258], per destination [260], per computation [196], and per class [16]) are
necessary to resolve link-flooding attacks, but are not sufficient: none of them
provides botnet-size independence, a critical property for viable DDoS defense.

Botnet-size independence is the property in which a legitimate flow’s allo-
cated bandwidth does not diminish below a guaranteed allocation when the
number of bots in other ASes increases. Per-flow and per-computation resource
allocation, for instance, will reduce their allocated bandwidth towards 0 when
the number of bots that share the corresponding resources increases.

244

11.2 Goals and Adversary Model

To illustrate the importance of botnet-size independence, we observe how
previous systems suffer from the tragedy of the network-link commons,1 which
refers to the problem that the allocation of a shared resource will diminish
toward an infinitesimally small allocation when many entities have the incentive
to increase their “fair share”. In particular, per-flow fair-sharing allocations
(including per-class categorization of flows) suffer from this fate, as each source
has an incentive to increase its share by simply creating more flows. However,
even when the fair-sharing system is not abused, the resulting allocations can
be too small to be useful.

To explain in more detail, denoting by N the number of end hosts in the
Internet, per-source or per-destination schemes could ideally conduct fair shar-
ing of Op1{Nq based on all potential sources or destinations that traverse a
given link. However, with increasing hop-count distance of the link from the
source or to the destination, the number of potential sources or destinations that
traverse that link increases exponentially. Per-flow reservation performs even
more poorly, allocating a bandwidth slice of only Op1{M2q in the case of a
Coremelt attack [231] between M bots, and only Op1{pMPqq during a Crossfire
attack [129] with P destination servers that can be contacted. In the presence
of billions of end hosts engaged in end-to-end communication, the allocated
bandwidth becomes too small to be useful.

SIBRA’s novel bandwidth allocation system operates at Internet scale and
resolves the drawbacks of prior systems. In a nutshell, SIBRA provides inter-
domain bandwidth allocations (which enable the construction of dynamic inter-
domain leased lines (DILLs), and in turn enable new ISP business models).
SIBRA’s bandwidth reservations let an AS guarantee a minimal amount of
bandwidth to its end hosts by limiting the possible paths in end-to-end com-
munication. An important property of SIBRA is its per-flow stateless fastpath
operation on transit routers for reservation renewal, monitoring, and policing,
which results in scalable and efficient router operation.

11.2 Goals and Adversary Model

The goal of SIBRA is to defend against link-flooding attacks, in which dis-
tributed attackers collude by sending traffic to each other (Coremelt [231]) or to
publicly accessible servers (Crossfire [129]) in order to exhaust the bandwidth
of targeted servers and Internet backbone links. In the case of Coremelt, it
may be impossible to limit the traffic volume (e.g., by TCP congestion control)
since the participating hosts are under adversarial control and can thus run any
protocol. In the case of Crossfire, distributed attackers collude by sending traffic

1We use this term following Garrett Hardin’s Tragedy of the Commons [107], which according
to the author has no technical solution, but instead “requires a fundamental extension in
morality.” As we should not expect attackers to show any of the latter, we believe in a
technical solution — at least for the Internet!

245

11 SIBRA

to legitimate hosts in order to congest network links leading towards selected
servers. We note that many other known attacks constitute a combination of the
two cases above.

Adversary Model

We assume that ASes may be malicious and misbehave by sending large
amounts of traffic (bandwidth requests and data packets). We furthermore
assume any AS in the world can contain malicious end hosts (e.g., as parts
of larger botnets). In particular, there is no constraint on the distribution of
compromised end hosts. However, attacks launched by routers that intentionally
modify, delay, or drop traffic cannot be handled by SIBRA.

Desired Properties

Under the defined adversary model, we postulate the following properties a
link-flooding-resilient bandwidth reservation mechanism should satisfy:

• Botnet-size independence: The amount of guaranteed bandwidth per
AS does not diminish (below a reserved cap) with an increasing number
of bots in ASes other than source or destination.

• Per-flow stateless operation: The mechanism’s overhead on routers
should be small. In particular, border routers of transit ASes should not
require per-flow, per-source, or per-destination state in the fastpath, which
can lead to state exhaustion attacks. Our analysis of real packet traces on
core links (see Section 11.9.2) supports the validity of this property.

• Scalability: The overhead of the system should scale to the size of
the Internet, including management and setup, AS contracts, router and
end-host computation and memory, as well as communication bandwidth.

To achieve the above properties, SIBRA directly uses SCION’s concepts of
isolation and path control, and performs a hierarchical bandwidth decomposition
at the granularity of ASes: Figure 11.1 depicts an example of four ISDs, in
which the two end hosts S and D in different ISDs are connected by stitching
three types of path segments together: an up-segment from S to its ISD core,
a core-segment within the Internet core (from source ISD to destination ISD),
and a down-segment from D’s ISD core to end host D. Intuitively, SCION’s
isolation property applied to SIBRA enables ASes inside an ISD to establish
paths with bandwidth guarantees: SIBRA steady paths inside the ISDs, and
SIBRA core paths between ISD cores. The SIBRA steady paths are set up
independently of bandwidth reservations in other ISDs. Finally, a third type,
end-to-end bandwidth reservation, called SIBRA ephemeral paths, will then
be based on the reservations inside and between the ISDs, but will be lower-
bounded for each AS. In particular, malicious entities will not be able to reduce
the guaranteed long-term allocation of other ASes.

246

11.3 Design Overview

SIBRA scales to the size of the Internet because the SCION network contains
only a small number of ISDs, each with a small number of core ASes. Therefore,
it is possible to perform resource allocation per neighboring core AS. Similarly,
within an ISD, resources can be allocated based on customer-provider contracts.

11.3 Design Overview

This section describes the design of SIBRA, in particular bandwidth reservations
and their enforcement. After a brief overview, we describe SIBRA’s reservation
types in detail.

A key insight of SIBRA is that hierarchical decomposition of the bandwidth
allocation problem can make allocation management and configuration scale to
the size of the Internet. Specifically, SIBRA uses three types of paths:

SIBRA Core Paths

between core ASes
across ISDs

SIBRA Ephemeral Paths

between end hosts
for end-to-end communication

SIBRA Steady Paths

between ASes
inside ISD

SIBRA core paths (the double continuous lines in Figure 11.1) can scalably
be established between core ASes due to their relatively small number. Within
each ISD, providers sell bandwidth to their customers, and customers can
establish intermediate-term reservations for specific intra-ISD paths, which we
call SIBRA steady paths (the dashed lines in Figure 11.1). Steady paths are
used for connection setup traffic: core and steady paths in conjunction enable
the creation of short-term end-to-end reservations across ISDs, which we call
SIBRA ephemeral paths (the solid green lines in Figure 11.1). Ephemeral paths,
in contrast to steady paths, are used for the transmission of high-throughput
data traffic.

SIBRA paths are established over SCION links with the following allocation
(see also Figure 11.2): 85% of the bandwidth of each SIBRA link is allocated
for SIBRA traffic (i.e., steady and ephemeral traffic), and the remaining 15%
for best-effort traffic. These proportions are flexible system parameters; we
discuss the current choice in Section 11.9.1. Note that the proportion for
steady and ephemeral traffic constitutes an upper bound: in case the steady and
ephemeral bandwidth is not fully utilized, it is allocated to best-effort traffic
(see Section 11.6).

An important feature of SIBRA is that steady paths, besides carrying the
control traffic of links inside an ISD, also limit the bandwidth for ephemeral

247

11 SIBRA

 D4
A3 S ISD

Austria

ISD
Japan

 ISD
Germany

A2

D1

C1

D2

 A1

D3

D

ISD United States

B1

core path
steady path
ephemeral path

provider-to-customer link
peering link

!

!
!

!

!

!

Figure 11.1: Sample topology with four ISDs and their ASes (the core ASes
are drawn in dark blue, non-core ASes in light blue). The SIBRA
ephemeral path (green) from end host S to D is created along a
SIBRA steady up-path, a SIBRA core path, and a SIBRA steady
down-path. The attack traffic (red) cannot diminish the reserved
bandwidth on SIBRA ephemeral paths.

paths: an ephemeral path is created by launching a request through existing
steady paths, whose amounts of bandwidth limit the bandwidth of the requested
ephemeral paths. More precisely, an ephemeral path is created through the
combination of (a) a SIBRA steady up-path in the source ISD, (b) a SIBRA
core path, and (c) a SIBRA steady down-path in the destination ISD.2 The
ephemeral path request uses only steady and core paths, while the actual data
traffic uses only the ephemeral path. The more bandwidth on steady (and core)
paths is purchased locally within an ISD (and between ISDs), the larger the
fraction of ephemeral bandwidth an end host can obtain to any other end host
on the Internet.

If an AS is dissatisfied with its reservation, it can purchase more bandwidth
for its SIBRA steady paths, as well as request its core AS to purchase a larger
allocation for the SIBRA core path, which the AS would likely need to pay

2For instance, Figure 11.1 shows an ephemeral path from host S in AS A3 to host D in AS D4.
If the source and destination are located in the same ISD, then the SIBRA core path may not
be necessary.

248

11.3 Design Overview

best-effort

 D3 D4

D1

steady
path

ephemeral
path

D

SIBRA
steady + ephemeral85%

15%

core
path

D2

C1C1

Figure 11.2: The anatomy of SIBRA links: 85% of the link bandwidth is used
for SIBRA traffic (i.e., core/steady/ephemeral traffic), and 15% for
best-effort traffic. In case the 85% SIBRA traffic is not fully used,
the remaining bandwidth can be utilized by best-effort flows.

for. Alternatively, a different core path that provides higher bandwidth could be
used instead.

Based on these ideas, it becomes intuitively clear how botnet-size indepen-
dence is achieved and how the tragedy of the network-link commons is resolved:
each pair of ASes can obtain a guaranteed bandwidth allocation, based on the
respective SIBRA steady paths and based on the SIBRA core paths. A botnet
cannot influence this guaranteed allocation, no matter what its size and distribu-
tion. A bot can only use up the bandwidth allocated to the AS it resides in, but
not lower the guaranteed allocation of any other AS. It is thus the responsibility
of an AS to manage its allocations, and thereby to prevent bots from exhausting
the resources of other hosts within that AS.

To make SIBRA viable for practical applications, it is important to ensure that
all aspects of the system are scalable and efficient, which holds in particular for
frequent operations such as flow admission, reservation renewal, and monitoring
and policing. For instance, all fastpath operations are per-flow stateless on
transit border routers to avoid state-exhaustion attacks and to simplify the router
architecture. The SIBRA service in each deploying AS relieves the SCION
border routers from dealing with the setup of SIBRA steady/core paths; it
processes steady/core reservation requests and updates accounting and policing
tables at the border routers.

249

11 SIBRA

To protect the SIBRA control plane, we mandate that a requester authenticates
its requests. A request contains a list of MACs, each corresponding to an on-
path AS (the requester derives the corresponding keys through the DRKey
protocol (Section 12.5).

11.4 SIBRA Core Paths

Core ASes establish SIBRA core paths to determine a guaranteed amount of
bandwidth for ephemeral traffic (see Figure 11.2, between AS C1 and AS D2).
If one of the core ASes sends more traffic than agreed on, the AS is held
accountable, according to the established contracts.

A SIBRA core path between two core ASes is established by either of the two
ASes and provides reciprocal reservations (i.e., in both directions with possibly
differing bandwidth amounts). The approach relies on two main techniques,
which are aliasing and telescoping.

Telescoping and Aliasing

Telescoping permits a SIBRA core path to be nested inside another core
path. An AS can leverage telescoping to extend a given reservation by
adding an AS at the reservation’s end, e.g., a reservation on the path pA1 Ñ
C1q can be extended to pA1 ÑC1 Ñ D1q, and then to pA1 ÑC1 Ñ D1 Ñ
D2q, as well as to pA1 ÑC1 Ñ D1 ÑC2q, assuming sufficient bandwidth
capacities (see below). To enable efficient policing, the telescopically
extended core path is said to be nested within its base core path, e.g.,
pA1 ÑC1 Ñ D1q is nested inside pA1 ÑC1q.
The way the bandwidth accounting is implemented is through aliasing, so
that different nested paths are accounted to the same reservation. Aliasing
permits a requester to use multiple identifiers to refer to reserved bandwidth
on a link, which naturally models the fact that multiple end-to-end paths
share some of the links between the core ASes. For example, in Figure 11.3,
the three paths pA1 Ñ C1q, pA1 Ñ C1 Ñ D1q, and pA1 Ñ C1 Ñ C2q all
share the link A1-C1, thus aliasing enables the reservations for paths
pA1 Ñ C1 Ñ D1q and pA1 Ñ C1 Ñ C2q to utilize the same reservation
as pA1 ÑC1q. Aliasing of identifiers simplifies accounting and enables
telescoping.

Reservations are usually reciprocal, that is, every request contains (a) a
demand for outgoing bandwidth, and (b) suggestions for incoming bandwidth
the requester accepts (which can be zero). This ensures atomic requests, i.e.,
requests are either accepted and immediately valid; or requests are denied, in
which case hints are given that enable a quick follow-up request with modified
bandwidth values. If accepted, reservations have a lifetime of a few minutes (3
minutes in the current design).

250

11.4 SIBRA Core Paths

peering link
p2c link

2 Tbps to
 C1

D2D1

bw request
confirmation

A1

C2

C1

1
(rev: 5

00 -
 800

 Mbps)

ack + 700
 Mbps

2

1 T
bp

s
to

 D
1

(re
v:

 40
0 -

 60
0 M

bp
s)

3

ac
k

+
50

0
M

bp
s

4

B1

Figure 11.3: SIBRA core path established between core AS A1 and AS D2.

We differentiate between the renewal and the extension of a SIBRA core path.
A renewal prolongs the lifetime of an existing core path (i.e., the reservation
validity duration), but keeps its structure (i.e., the order of the involved core
ASes); an extension extends the core path by one (or more) hops (i.e., the
involved core ASes), but retains its validity time.

Setup of SIBRA Core Paths

The setup of SIBRA core paths is best explained by means of the example
provided in Figure 11.3. The SIBRA core path from core AS A1 to core AS D2
is established by A1 when requesting bandwidth to D2 (using the corresponding
core-segment between A1 and D2). More specifically, A1 has two options for
sending a SIBRA core path request along the path to D2:

• initial: AS A1 sends an initial request directly to AS D2, which each core
AS on the path acknowledges or denies (see below), or

• telescope: AS A1 first sets up a SIBRA core path to AS C1 (using an
initial request as in Step ¬ in Figure 11.3) and later extends the estab-
lished core path by sending a telescope request (Step ®) such that the
extended SIBRA core path includes the next core AS, D1 in this case.
This extension step is repeated until the core path terminates at D2.

We note that an initial request can span one or multiple hops (e.g., A1’s initial
request can terminate at C1, but also at C1, D1, or D2). Likewise, a telescope

251

11 SIBRA

request can span one or multiple hops (e.g., an initial request to C1 can be
extended to D1 or C2, but also to D2).

In the following, we first describe the telescope procedure. A1’s initial
request (Step ¬) specifies the amount of outgoing traffic (a value of 2 Tbps)
and suggests the desired amount of incoming traffic it would accept (a range
between 500 Mbps and 800 Mbps). C1 can now decide to accept the request
and send a confirmation message (“ack”) back to A1 (Step ­), which includes
a return request of, say 700 Mbps, that A1 will accept and confirm since the
offered bounds are respected. A1 can then immediately start sending traffic of
up to 2 Tbps, and receive traffic of up to 700 Mbps from C1.

C1 can also deny the request from A1, in which case C1 would propose
different bandwidth values to be used instead, for instance 1.5 Tbps (instead
of 2 Tbps) and up to 900 Mbps on the return path. This case is not shown in
Figure 11.3. A1 would have to send a second request that is adapted accordingly,
if it agrees with the suggested values.

We note that in practice, for efficient operation, an AS does not specify arbi-
trary bandwidth values (or ranges); instead the AS chooses from a predefined
set of bandwidth classes.

Telescope Extension

If AS A1 wants to extend its SIBRA core path (so that it terminates at AS D1),
it sends a new SIBRA core path request, say of 1 Tbps, along the path to AS D1
(Step ®), and declares that the new path should be an alias (on the link A1-C1)
for the previously established core path to AS C1. For the sake of illustration,
we introduce core path identifiers such as xA1C1y for the SIBRA core path from
request ¬, and xA1C1D1y for its first extension.3

In this context, xA1C1D1y is an alias for xA1C1y on the link A1-C1, which
means that from the perspective of the ingress border router at AS C1, any data
packet that contains either xA1C1y or xA1C1D1y will be treated equally with
respect to checking that the base reservation on the ingress link, in this case
2 Tbps, is not exceeded. This is irrespective of whether xA1C1y or xA1C1D1y
is used. We annotate base identifiers with a small rectangle n , and aliased
identifiers with a star ˚ in front of the identifier:

Link A1-C1, at ingress C1

nxA1C1y 2 Tbps
˚xA1C1D1y /

However, to let A1’s border router correctly police the outgoing traffic, it
considers the extended identifier xA1C1D1y nested inside the base identifier

3Our implementation uses fixed-length, non-guessable randomized identifiers, which we omit
here for the sake of readability.

252

11.4 SIBRA Core Paths

xA1C1y. This entails not only the constraint that 2 Tbps of its base reservation
are met, but also that A1’s traffic to D1 stays within the reserved 1 Tbps. We
annotate nested identifiers with an arrow ë as follows:

Link A1-C1, at egress A1

nxA1C1y 2 Tbps
ëxA1C1D1y 1 Tbps

C1’s egress border router on C1- D1, however, does not consider the two
identifiers as aliases or nested when policing the outgoing traffic to D1. It will
forward only the traffic that contains the identifier xA1C1D1y and only up to
1 Tbps.

Link C1- D1, at egress C1

nxA1C1D1y 1 Tbps

The SIBRA core path can be extended further (not shown in Figure 11.3):
AS A1 can send yet another extension request for a new path xA1C1D1D2y of
800 Mbps and declare xA1C1D1D2y an alias of xA1C1D1y. Consequently, on
the link A1-C1, all three core paths are aliases of the same reserved 2 Tbps.
A1’s border router considers the identifiers to be nested (left table). On the link
C1- D1, there are only two aliased identifiers for the reserved bandwidth (right
table).

Link A1-C1, at egress A1

nxA1C1y 2 Tbps
ëxA1C1D1y 1 Tbps
ëxA1C1D1D2y 800 Mbps

Link C1- D1, at egress C1

nxA1C1D1y 1 Tbps
˚xA1C1D1D2y /

The rule of thumb here is that egress border routers of the source ASes use
nested identifiers to ensure that outgoing traffic does not exceed the reserved
bandwidth margins. The same applies to ingress border routers of the destination
ASes. All transit border routers, however, enable more efficient operation in
that aliases are used instead. We provide more examples of aliasing and nesting
later in this section.

Initial Requests

In the case of an initial request that is sent directly to the destination AS, say
D2, every transit AS on the path accepts or denies, as above. In the denial case,
modified bandwidth values are suggested by each transit AS and collected in the
request packet (see also Case (d) in Figure 11.6 on Page 260). The destination
will return the suggested bandwidth values to the requester, who can then issue
a second request with bandwidth values adjusted accordingly.

253

11 SIBRA

Algorithm 8 Bandwidth determination at a transit core AS.
1: demandLinkAS: a map that stores demanded bandwidth per a (link, AS) pair.
2: demandTransit: a map that stores demanded bandwidth between two links.
3: reservedLinkAS: a map that stores reserved bandwidth per a (link, AS) pair.
4: limit: a map that for a (link1, link2) pair stores a bandwidth limit (ď

minplink1.capacity,link2.capacity)). This map can express a traffic matrix (de-
rived from average traffic patterns) or can be configured by an AS operator.

5: δ P p0,1q: an AS’s parameter.

6: procedure HANDLEREQUEST(req)
7: bwReq = min(req.BW, limit[req.inLink, req.outLink])
8: demandLinkAS[req.inLink, req.src] += bwReq
9: demandLinkAS[req.outLink, req.src] += bwReq

10: demandTransit[req.inLink, req.outLink] += bwReq
11: bwDet = DetermineBW(bwReq, req.inLink, req.outLink)
12: if bwDet == req.BW then
13: Reserve the bandwidth
14: else
15: Send bwDet as a hint
16: end if
17: end procedure
18: procedure DETERMINEBW(bwReq, inLink, outLink)
19: inAvailable = inLink.capacity - sum(reservedLinkAS[inLink, any])
20: propIn = bwReq / sum(demandLinkAS[inLink, any])
21: bwInIdeal = inLink.capacity*propIn
22: bwIn = min(bwReq, bwInIdeal, inAvailable˚δ)
23: totalTransitDemand = 0
24: for inLinkT , val P demandTransit[any, outLink] do
25: totalTransitDemand += min(val, inLinkT .capacity, outLink.capacity)
26: end for
27: linkDemand = min(demandTransit[inLink, outLink], limit[inlink, outLink]) /
28: totalTransitDemand
29: outAvailable = outLink.capacity - sum(reservedLinkAS[any, outLink])
30: bwOutIdeal = (bwReq / demandTransit[inLink, outLink])*linkDemand
31: bwOut = min(bwOutIdeal, outAvailable˚δ)
32: return min(bwIn, bwOut)
33: end procedure

Algorithm 8 describes how a transit core AS could decide how much band-
width a given request should be granted. To enable scaling, decisions are made
per neighbor link. The first step of the algorithm is to normalize a request
and to add the demand to the bandwidth demand maps.4 Then, the bandwidth
determination procedure is executed. First, bandwidth for an incoming link
(bwIn) is computed. This is the minimum of the weighted available bandwidth
of the incoming link5 and the proportion between the demanded amount and

4The algorithm operates on 3-minute request windows, and bandwidth reserved and stored in
the maps automatically expires at the end of its request window.

254

11.4 SIBRA Core Paths

the sum of all demands on the incoming link. The bandwidth for the outgoing
link (bwOut) is computed in a similar way, but the proportion is calculated
between the demand for the pair of incoming and outgoing links and the sum of
all demands that use the outgoing link. The offered bandwidth is the minimum
of bwIn and bwOut. If that value equals the requested bandwidth, then the
bandwidth can be reserved. Otherwise, the requester AS is informed about the
offered bandwidth. The requested bandwidth for link pairs can be limited by an
AS through the limit map.

In case all ASes have agreed, a successful request is delivered back to the re-
quester (Case (c) in Figure 11.6). This message contains all necessary identifiers
so that the request is considered active and the requester can instantaneously
use the reserved bandwidth until its expiration.

Requests for the Reverse Direction

As previously mentioned, a SIBRA core path request contains not only the
fixed bandwidth value that the sending core AS requests to the destination core
AS but also a bandwidth range, which the destination core AS uses as a guide
to choose a bandwidth value and then to set up a reservation in the reverse
direction.

Figure 11.4 shows how bandwidth in the reverse direction is established:
with the confirmation (“ack”) to the initial request (“req”), a reciprocal request
is issued that reserves bandwidth in the reverse direction. After both requests
have been confirmed, the border routers are updated to perform policing and
accounting for traffic carrying the request identifiers. In Figure 11.4, the
border routers are updated twice: once after the first request, and once after
the telescopic extension. The changes from the previous allocation table are
highlighted in blue.

Example: Nesting and Aliasing at SCION Border Routers

In the following, we will explain each step shown in Figure 11.4. A1 requests a
core path to its neighbor C1, according to the topology shown in Figure 11.3. A1
thus issues a request of 2000 Mbps using a fresh identifier xA1C1y. A1 specifies
a range of 500 to 800 Mbps as a suggestion for traffic in the reverse direction.
The bullet ‚ indicates an empty value for reference identifiers, meaning that the
request is an initial request: it neither extends an existing core path, nor does it
create an alias.

C1 accepts the request and issues a reverse request of 700 Mbps, for which
it chooses a fresh identifier xC1A1y. As the identifier serves as a response to
the first request, C1 links its new identifier to the received identifier xA1C1y (as

5The available bandwidth on incoming and outgoing links is weighted by the parameter δ to
leave some amount of bandwidth for new requests.

255

11 SIBRA

A1 C1 D1

req(2000,xA1C1y,‚,500,800)

ackxA1C1y + req(700,xC1A1y,‚,‚,‚)

ackxC1A1y

Ingress:
■ xC1A1y@700
˚xA1C1y
Egress:
■ xA1C1y@2000
˚xC1A1y

Ingress:
■ xA1C1y@2000
˚xC1A1y
Egress:
■ xC1A1y@700
˚xA1C1y

req(1000,xA1C1D1y,xA1C1y,500,700) req(1000,xA1C1D1y,‚,500,700)

ackxA1C1D1y + req(600,xD1C1A1y,‚,‚,‚)ackxA1C1D1y + req(600,xD1C1A1y,‚,‚,‚)

ackxD1C1A1y ackxD1C1A1y

Ingress:
■ xC1A1y@700
˚xA1C1y
ëxD1C1A1y@600
˚xA1C1D1y
Egress:
■ xA1C1y@2000
˚xC1A1y
ëxA1C1D1y@1000
˚xD1C1A1y

Ingress:
■ xA1C1y@2000
˚xC1A1y
˚xA1C1D1y
˚xD1C1A1y
Egress:
■ xC1A1y@700
˚xA1C1y
˚xD1C1A1y
˚xA1C1D1y

Ingress:
■ xD1C1A1y@600
˚xA1C1D1y

Egress:
■ xA1C1D1y@1000
˚xD1C1A1y

Ingress:
■ xA1C1D1y@1000
˚xD1C1A1y
Egress:
■ xD1C1A1y@600
˚xA1C1D1y

Figure 11.4: SIBRA core path request messages. Within each AS, the SIBRA
service sends and processes requests.

specified in the acknowledgment). This link contains sufficient information
for the SIBRA service to update the border routers that the requested identifier
xC1A1y has the alias xA1C1y. The reverse request does not contain a suggested
bandwidth range since it has been set up with the first request.

A1 accepts the reverse request and sends an acknowledgement back to C1.
Thereafter, both A1 and C1 update their border routers as specified in the boxes
in Figure 11.4: overall, there are eight entries, but — thanks to the aliasing of
identifiers — only four of them (the base reservations, marked with a rectangle
n) are necessary for accounting and policing purposes. The aliases (marked
with a star ˚) identify the reverse data traffic that uses the same identifier as
the original traffic. For example, traffic initiated at C1 and sent to A1 will use
the identifier xC1A1y and can send at up to 700 Mbps. When A1 replies, it will
keep the identifier xC1A1y, but can send at a rate of 2000 Mbps.

A1 next establishes a core path to D1. As it extends its existing reservation
to C1, it will also specify (in addition to a fresh identifier xA1C1D1y and the

256

11.4 SIBRA Core Paths

bandwidth of 1000 Mbps) the reference to the existing core path that it extends;
in this case xA1C1y.

When the request arrives at C1, it will remove the reference to the extended
core path xA1C1y, since it terminates at C1. In other words, the reference
identifier will not be useful beyond C1. After removing the reference, the
request is forwarded to D1. We assume that D1 agrees and chooses 600 Mbps
for the reverse reservation back to A1, which confirms the reservation. All three
ASes update their border routers as highlighted in blue in Figure 11.4.

Egress border routers use nested identifiers (a) when referenced identifiers
are specified, and (b) when the border router is in the source AS (example:
xA1C1D1y for A1.Egress on the link to C1). The ingress border router of the
transit AS C1 uses an alias instead (example: xA1C1D1y for C1.Ingress on the
link from A1). Ingress border routers use nested identifiers when located in the
destination AS (example: xD1C1A1y for A1.Ingress on the link from C1). All
transit ASes use aliases or base identifiers.

Example: Telescoping After Two-Side Reservations

We next explain a more involved scenario, as depicted in Figure 11.5. The main
difference to the example shown in Figure 11.4 is that both A1 and D1 establish
reservations with C1 before A1 telescopically requests bandwidth to D1.

A1 sets up a reservation with C1 as before. D1 requests bandwidth to C1 of
3000 Mbps. It creates a fresh identifier xD1C1y and accepts 1400 Mbps from
C1. This identifier is used in request ² when D1 sends its reverse request to A1.
In this case, D1 knows it has a reservation with C1 and thus creates a telescopic
extension for it. To this end, it includes the base identifier as a reference. This
reference will be removed by C1 in the forwarded request ³ since xD1C1y
terminates at C1. Similarly, and as in the previous example, C1 removes the
reference identifier xA1C1y when forwarding request ° to D1.

As a consequence, the border routers are updated by the SIBRA service as
shown in Figure 11.5.

Lifetime and Renewal

SIBRA core reservations have a lifetime of 3 minutes; this is a SIBRA system
parameter that we chose to enable rapid adjustment to changing network con-
ditions. Within the lifetime of a SIBRA core path, the core AS (that has been
granted the corresponding reservation) has guaranteed access to the forward
steady bandwidth as reserved. Client end hosts can obtain ephemeral bandwidth
according to the steady bandwidth as described in Section 11.6 below.

257

11 SIBRA

A1 C1 D1

① req(2000,xA1C1y,‚,500,800)

② ackxA1C1y + req(700,xC1A1y,‚,‚,‚)

ackxC1A1y

Ingress:
■ xC1A1y@700
˚xA1C1y
Egress:
■ xA1C1y@2000
˚xC1A1y

Ingress:
■ xA1C1y@2000
˚xC1A1y
Egress:
■ xC1A1y@700
˚xA1C1y

③ req(3000,xD1C1y,‚,1200,1500)

④ ackxD1C1y + req(1400,xC1D1y,‚,‚,‚)

ackxC1D1y

Ingress:
■ xA1C1y@2000
˚xC1A1y
Egress:
■ xC1A1y@700
˚xA1C1y

Ingress:
■ xD1C1y@3000
˚xC1D1y
Egress:
■ xC1D1y@1400
˚xD1C1y

Ingress:
■ xC1D1y@1400
˚xD1C1y
Egress:
■ xD1C1y@3000
˚xC1D1y

⑤ req(1000,xA1C1D1y,xA1C1y,500,700) ⑥ req(1000,xA1C1D1y,‚,500,700)

⑦ ackxA1C1D1y + req(600,xD1C1A1y,xD1C1y,‚,‚)⑧ ackxA1C1D1y + req(600,xD1C1A1y,‚,‚,‚)

ackxD1C1A1y ackxD1C1A1y

Ingress:
■ xC1A1y@700
˚xA1C1y
ëxD1C1A1y@600
˚xA1C1D1y
Egress:
■ xA1C1y@2000
˚xC1A1y
ëxA1C1D1y@1000
˚xD1C1A1y

Ingress:
■ xA1C1y@2000
˚xC1A1y
˚xA1C1D1y
˚xD1C1A1y
Egress:
■ xC1A1y@700
˚xA1C1y
˚xD1C1A1y
˚xA1C1D1y

Ingress:
■ xD1C1y@3000
˚xC1D1y
˚xD1C1A1y@600
˚xA1C1D1y
Egress:
■ xC1D1y@1400
˚xD1C1y
■ xA1C1D1y@1000
˚xD1C1A1y

Ingress:
■ xC1D1y@1400
˚xD1C1y
■ xA1C1D1y@1000
˚xD1C1A1y
Egress:
■ xD1C1y@3000
˚xC1D1y
ëxD1C1A1y@600
˚xA1C1D1y

Figure 11.5: SIBRA core path request messages.

Authentication

SIBRA core path requests are authenticated using public-key signatures that
state the requests’ validity at AS-level granularity. The SIBRA service checks
the signed requests using SCION’s AS certificates.

As we will discuss later in the chapter, SIBRA relies on efficient message
authentication codes (MACs) to enable stateless fastpath operation on transit
border routers.

258

11.5 SIBRA Steady Paths

Payment

Core paths not only guarantee bandwidth between ISDs, they also regulate the
traffic-related money flow between core ASes according to existing provider-
to-customer (p2c) or peering (p2p) relationships (e.g., p2c between AS D1 and
AS D2, and p2p between AS C1 and AS D1).

In line with today’s state of affairs, we believe that market forces create a
convergence of allocations and prices when ASes balance bandwidth with their
peers and adjust contracts such that direct core AS neighbors are satisfied. The
neighbors, in turn, recursively adapt their contracts to satisfy the bandwidth
requirements of their customers. Paying customers thus indirectly indicate to
core ASes the destination ISDs of core paths and their desired bandwidth.

Path Format

SIBRA paths are created using SCION paths and have a similar structure. In
order to construct a SIBRA path, an AS creates cryptographically authenticated
reservation tokens (RTs), which are similar to hop fields. A SIBRA path
is a series of RTs prepended with an info field. An RT generated by ASi is
authenticated using a cryptographic key Ki known only to ASi, by which ASi can
later verify if an RT embedded in the data packet is authentic. More specifically,
the RT contains the authenticated ingress and egress interfaces of ASi, and
the reservation request information (such as reservation lifetime or amount of
reserved bandwidth). In order to prevent an attacker from crafting a path from
partial RT chunks, the RTs are onion-authenticated:

RTASi “ ingressASi ‖ egressASi ‖
MACKipingressASi ‖ egressASi ‖ Request ‖ RTASi´1q

(11.1)

where Request is defined as BWreq ‖ ExpTime ‖ FlowID ‖ ResvID.
The same path format is used by steady and ephemeral paths (described

throughout the following sections).

11.5 SIBRA Steady Paths

Steady paths are intermediate-term reservations that are established by ASes
within an ISD. For example, in Figure 11.1, AS A3 sets up a steady path to
A1, and D4 sets up a steady path to D2. Steady paths expire, but their validity
periods can be periodically extended (in our current implementation the default
validity period is 3 minutes). An endpoint AS can voluntarily tear down its
steady path before expiration and set up a new steady path. Steady paths are
set up similarly to core paths, though not between core ASes across ISDs,
but between ASes inside an ISD. SIBRA uses steady paths (in addition to

259

11 SIBRA

core paths) as building blocks for ephemeral paths: to guarantee availability
during connection setup and to perform weighted bandwidth reservations, as
we explain in more detail below.

Reservation Request

SIBRA leverages SCION’s PCBs (Sections 2.1 and 7.1.1), which disseminate
top-down from the ISD core to the ASes. On their journey downstream, they
collect AS-level path information as well as information about the current
amount of available bandwidth for each link. When a leaf AS receives such a
beacon with information about a path segment, the AS can decide to submit
a reservation request for a steady path on that segment. In this case, the leaf
AS (e.g., AS A3 in Figure 11.1, or S3 in Figure 11.6) computes a new flow
ID, chooses the amount of bandwidth and the expiration time, and sends a
steady path reservation message up the path to the core. The requested amount
of bandwidth can be chosen from a number of predefined bandwidth classes,
introduced for monitoring-optimization purposes (Section 11.7). The actual
request messages for steady paths are established similarly to the way SIBRA
core paths are established (Section 11.4).

(Step III)
RT generation

flowID1

flowID2

flowID3

(Step I)
Admission control

temporary reserv. actual reserv. failed reserv.

(Step IV)
Actual reservation

(Step II)
Temporary
reservation

a

b

c

ingress
router

SIBRA
SERVICE

egress
router

S2

S1
source

source

destination
S3

source

d

 D

Figure 11.6: A transit AS processing reservation requests from sources S1, S2,
S3 to destination D.6 Steady/core path requests are processed by
the SIBRA service, while ephemeral path requests are efficiently
processed by the border routers.

Each intermediate AS on the path to the core performs admission control
by verifying the availability of steady bandwidth to its neighbors on the path
(Step I in Figure 11.6). Given the fact that inbound traffic from multiple ingress
routers may converge at a single egress router, admission control is performed
at both ingress and egress routers. Specifically, the ingress router of ASi checks

260

11.6 SIBRA Ephemeral Paths

the availability of steady bandwidth on the link ASi´1 Ñ ASi, and the egress
router of ASi on the link ASi Ñ ASi`1. If enough bandwidth is available at
both the ingress and the egress router (Case (a) in Figure 11.6), both routers
temporarily reserve the requested bandwidth (Step II). Subsequently, the egress
router of ASi issues a cryptographically authenticated reservation token (RT)
(see Equation 11.1) encoding the positive admission decision (Step III).

If at least one of the routers of ASi cannot meet the request (Case (b) in
Figure 11.6), it suggests an amount of bandwidth that could be offered instead,
and adds this suggestion to the packet header. Although already failed, the
request is still forwarded to the ISD core to collect suggested amounts of
bandwidth from subsequent ASes. This information helps the source make an
informed and direct decision in a potential bandwidth re-negotiation. At the
same time, the denying AS immediately sends a denial response back to the
requester to enable early notification.

As steady paths are only infrequently updated, scalability and efficiency of
steady path updates are of secondary importance. However, ASi can still perform
an efficient admission decision by simply considering the current utilization of
its directly adjacent AS neighbors. Such an efficient mechanism is necessary for
reservation requests (and renewals) to be fastpath operations, avoiding accessing
per-path state. In case of a positive admission decision, ASi needs to account for
the steady path individually per leaf AS from which the reservation originates.
Only slowpath‹ operations, such as policing of misbehaving steady paths, need
to access this per-path information about individual steady paths.

Confirmation and Usage

When the reservation request reaches the destination6, the destination D replies
to the requesting source (e.g., S3) either with a confirmation message (Case (c)
in Figure 11.6) containing the RTs accumulated in the request packet header,
or with a rejection message (Case (d) in Figure 11.6) containing the suggested
bandwidth information collected before. As the confirmation message travels
back to the source, every ingress and egress router accepts the reservation
request and switches the reservation status from temporary to active (Step IV).

11.6 SIBRA Ephemeral Paths

Ephemeral paths are short-lived end-to-end reservations for high-bandwidth
communication between end hosts (unlike core/steady paths, which are estab-
lished between ASes). In the spirit of fair allocation of joint resources, the

6 We use the term destination in the following (and also in Figure 11.6) to stay as general as
possible. For steady-path reservation requests, the destination is the ISD core; for ephemeral-
path reservation requests, the destination will be another end host (Section 11.6).

261

11 SIBRA

lifetime of ephemeral paths is limited to 16 seconds in order to curtail the time
of resource over-allocation; they thus require continuous renewals throughout
the life of the connection. The source, the destination, and any on-path AS
can rapidly re-negotiate the allocations. Figure 11.1 on Page 248 shows two
ephemeral paths, one inside an ISD, and one across three ISDs — from end
host S in AS A3 to end host D in AS D4.

Ephemeral Paths from Steady and Core Paths

An ephemeral path reservation is launched by an end host (as opposed to a
steady path reservation, which is launched by an AS). The end host (e.g., host S
in Figure 11.1) first obtains a steady up-path starting at its AS (e.g., A3) to the
ISD core, and a steady down-path starting at the destination ISD core (e.g., D2)
to the destination AS (e.g., D4). Joining these steady paths with a SIBRA core
path (e.g., from A1 to D2) results in an end-to-end path P, which is used to send
the ephemeral path request from the source end host S to the destination end
host D using the allocated steady bandwidth.

More specifically, S first generates a fresh, randomized flow ID of length 64
bits, say x A3 || D4 y (we omit the randomness here for the sake of illustration),
then chooses an amount of bandwidth from SIBRA’s predefined ephemeral
bandwidth classes, and sends the ephemeral path request along path P. The
AS in which the source host resides (e.g., AS A3) may decide to block the
request in some cases, for instance if the client requires too much bandwidth.
Each intermediate AS on path P performs admission control. Source and
destination AS ensure through a weighted fair-sharing mechanism that the
ephemeral bandwidth is split among all end hosts (who wish to obtain ephemeral
reservations). The bandwidth reservation continues similarly to the steady path
case, except that instead of the ASes’ SIBRA service, the ASes’ border routers
process the reservation request for ephemeral paths (see Figure 11.6).

If bots infest source and destination ASes, these bots may try to exceed their
fair share by requesting excessively large amounts of bandwidth. To thwart
this attack, each AS is responsible for splitting its purchased bandwidth among
its end hosts according to its local policy, and for subsequently monitoring the
usage.

Efficient Weighted Bandwidth Fair Sharing

The intuition behind SIBRA’s weighted fair-sharing approach for ephemeral
bandwidth allocation is that purchasing steady bandwidth on a link enables
ephemeral bandwidth to be requested on that link. We explain the details based
on Figure 11.7: the bandwidth of the ephemeral path from end host S to D
depends on the reserved bandwidth of the steady up-path from A3 up to A1,
on the reserved bandwidth of the steady down-path from D2 down to D4, and

262

11.6 SIBRA Ephemeral Paths

also on the reserved bandwidth of the core path from A1 to D2. We explain
the details of the three cases of intra-source-ISD links, core links, and intra-
destination-ISD links in the following. In each case, we discuss how much
ephemeral bandwidth can be given to the entirety of end hosts inside the source
AS, that is, we do not differentiate between individual end hosts for admission
control by on-path ASes.

 D4
A3 S

A2

D1

C1

D2

 A1

D3

100 kbps

2
Mb
ps

40
0
kb
ps

D

core path
steady path
ephemeral path

provider-to-customer link
peering link

500
 kb

ps

20
0 k

bp
s

1
 Mbps

30
0
kb
ps

Figure 11.7: Ephemeral bandwidth amounts depend on steady bandwidth and
the ratio with respect to other steady reservations.

Ephemeral bandwidth in the source ISD. Assuming A3 has a SIBRA
steady up-path of 500 kbps to its core A1, then A3 can offer its end hosts
ephemeral bandwidth of up to 500 kbps on the link up to A1 — regardless of
the ephemeral path requests from any other AS to A1:

eBWA3ÑA1 “ sBWA3ÑA1 (11.2)

The ephemeral bandwidth is shared among the end hosts of A3, but not shared
with the end hosts of other ASes. This sharing is at the discretion of A3, that
is, A3 decides how much ephemeral bandwidth each end host should obtain
(assuming that no more than 500 kbps is used in total). As every intermediate

263

11 SIBRA

AS on the path has to accept (or deny) the ephemeral request, a request can still
fail, even if A3 has accepted it. This, however, should only happen in case of
failures or over-subscription.

In the case of a denied request, the procedure is the same as for steady path
requests: if one of the routers cannot meet the request, it suggests an amount of
bandwidth that could be offered instead, and adds this suggestion to the packet
header (see Figure 11.6). Although already failed, the request is still forwarded
towards the destination end host to collect suggested amounts of bandwidth
from subsequent ASes. This information helps the requesting end host make an
informed and direct decision in a potential second request. At the same time,
the denying AS immediately sends a denial response back to the requester to
enable early notification.

Ephemeral bandwidth on core links. To provide bandwidth guarantees on
every link to a destination, SIBRA extends the influence of the steady up-path
bandwidth along the path to the destination AS. In fact, SIBRA’s weighted
fair sharing for ephemeral bandwidth on core paths weights the steady up-path
bandwidth, as explained in the following.

Let sBW˚ÑA1 be the total amount of steady bandwidth sold by a core AS,
say A1, for all steady paths in A1’s ISD. In accordance with Figure 11.7, this
yields 800 kbps. To be precise, sBW˚ÑA1 includes another 200 kbps for the
hosts inside AS A1.

Let sBWA3ÑA1 be the reserved bandwidth sold for a particular steady up-path
in this ISD, say A3 Ñ A1 with 500 kbps.

Let cBWA1ÑD2 be the bandwidth reserved on the SIBRA core path from A1
to D2, 2 Mbps in this case.

Then, the sum of ephemeral reservations on the SIBRA core path launched
by the end hosts in A3 (which are competing against other hosts whose ASes
have steady reservations to the ISD core) can be up to

eBWA1ÑD2 “
sBWA3ÑA1

sBW˚ÑA1

¨ cBWA1ÑD2 (11.3)

which amounts to 1 Mbps for the example of Figure 11.7.
In other words, the ephemeral bandwidth on a SIBRA core path (reservable by

the end hosts of a particular AS A3) depends not only on the reserved bandwidth
on the core path, but also on A3’s steady up-path bandwidth in relation to the
total amount of steady up-path bandwidth purchased by other ASes in the ISD.

Thus, even if all end hosts in each AS of the source ISD, say A, establish
reservations to hosts in one destination core AS, say D2, then the total traffic
will not exceed the reservation of 2 Mbps on the core path to D2.

264

11.6 SIBRA Ephemeral Paths

Ephemeral bandwidth in the destination ISD. In the destination ISD,
the weighted fair sharing is slightly more complex, but follows the ideas of
the previous cases: the weighting includes the ratio of steady bandwidth of all
steady up-paths in the source ISD, the ratio of core bandwidth of the core paths
ending in the core AS of the destination ISD, and the steady bandwidth down
to the destination AS.

More precisely, the ephemeral path requests from A3 to D4 can obtain
ephemeral bandwidth in the destination ISD of up to

eBWD2ÑD4 “
sBWA3ÑA1

sBW˚ÑA1

¨ cBWA1ÑD2

cBW˚ÑD2

¨ sBWD2ÑD4 (11.4)

where cBW˚ÑD2 is the total amount of bandwidth negotiated in the core paths
between any core AS and D2, and sBWD2ÑD4 is the steady bandwidth reserved
from D2 down to D4. In our example, we obtain eBWD2ÑD4 “ 500 kbps

1000 kbps ¨ 2 Mbps
3 Mbps ¨

300 kbps“ 100 kbps.
Equation 11.4 looks similar to Equation 11.3, with an additional factor in

the weighting that reflects the ratio of incoming traffic from other core ASes.
Intuitively, this factor ensures that traffic from every other core AS obtains its
share based on the bandwidth negotiated. This means that even if all hosts
that have steady/core reservations to D4 reserve ephemeral bandwidth to D4,
then: (a) no more traffic than the steady down-path reservation to D4 will be
received by D4, and (b) every such host obtains its fair proportion according to
the established reservations on steady and core paths.

There is one problem, though. The above equation takes into account reser-
vations from hosts located in ASes outside D2’s ISD, i.e., ASes that have core
paths set up to D2. ASes inside D2’s ISD, however, (as they obviously have no
core paths set up to D2) are not considered. We thus extend the equation by
adding a term to the denominator of the second fraction:

eBWD2ÑD4 “
sBWA3ÑA1

sBW˚ÑA1

¨ cBWA1ÑD2

cBW˚ÑD2 ` sBW˚ÑD2

¨ sBWD2ÑD4 (11.5)

where sBW˚ÑD2 represents the steady up-paths to core AS D2. To be precise,
this value does not include the steady up-paths from D4, a detail that we omit
here for brevity’s sake. D4 would not set up ephemeral reservations to itself
through the ISD core.

In order to give D2 more fine-grained control for balancing traffic, the calcu-
lated value eBWD2ÑD4 can be weighted by a factor α P p0,1q.

Finally, the total bandwidth for all ephemeral paths between the end hosts in
A3 and D4 can be up to

eBWA3ÑD4 “ minpeBWA3ÑA1 ,eBWA1ÑD2 ,eBWD2ÑD4q (11.6)

265

11 SIBRA

Processing Ephemeral Path Requests

Upon receiving a SIBRA ephemeral path request, each border router on the
path inspects the specified identifiers of the underlying steady/core paths. For
example, assume end host S inside A3 requests 50 kbps to end host D inside D4,
and uses the ephemeral path identifier x A3 || D4 || f09a . . .c y to uniquely label
the new ephemeral path. Figure 11.8 shows the steady/core paths, on which
the ephemeral path request is based. We note that all identifiers are 64 bits and
randomized, which is omitted from the figure.

The egress border router of A3 compares the requested 50 kbps with the
available bandwidth on the steady up-path. The router performs a table lookup
for the identifier of the underlying steady path, x A3 || A1 y in this case, and
finds that 150 kbps of ephemeral BW are in use.

Path ID Reserved steady BW Used ephemeral BW

x A3 || A1 y 500 kbps 150 kbps

As more than 50 kbps is available, the router grants the request and adds
50 kbps to the used ephemeral bandwidth. It also remembers to release the
50 kbps at the time when the ephemeral path expires. The expiration time is
expressed in SIBRA ticks and one SIBRA tick is 4 seconds. Assuming that the
requested ephemeral path has a lifetime of four SIBRA ticks (i.e., 16 seconds),
then the router performs the following operations:

usedEphBW += 50

releaseBW[cur+4] += 50

The array release is a cyclic data structure that stores the amounts of
bandwidth to be released in the future (time is expressed in SIBRA ticks).
After each epoch, the pointer cur is stepped by one position, the bandwidth is
released, and the data structure is reset:

cur += 1

usedEphBW -= releaseBW[cur]

releaseBW[cur] = 0

All operations referring to epochs are computed modulo the number of
epochs.

The request is forwarded along the path and reaches the ingress border router
of A2, which will perform the same operations as A3.

If a border router further along the path denies the request, the denying router
will send a deny message back to all previous routers. The egress router of A3

266

11.6 SIBRA Ephemeral Paths

 D4
A3 S

A2

D1

C1

D2 A1

D3

D

core path
steady path
ephemeral path

provider-to-customer link
peering link

hA3||A1i hD2||D4i

hA1||D2i hA3||D4||f09a..ci
2 Mbps

500 kbps 300 kbps

Figure 11.8: Identifiers for steady, core, and ephemeral paths.

will then subtract the 50 kbps from its used bandwidth and will also remove the
future release value.

For the sake of simplicity, we have omitted the bandwidth values for the
reverse direction. Requests and table entries also carry the reverse bandwidth
values.

Fair Sharing of Steady Paths

A challenging question is whether a fair-sharing mechanism is necessary for
steady bandwidth. A steady up-path is used solely by the AS that requested it,
and its use is monitored by the AS, which splits the steady up-path bandwidth
between its end hosts. In contrast, steady down-paths need to be revealed
to several potential source ASes, either as private steady down-paths (e.g.,
for a company’s internal services), or as public steady down-paths (e.g., for
public services). To prevent a botnet residing in malicious source ASes from
flooding steady down-paths, SIBRA uses a weighted fair-sharing scheme similar
to ephemeral paths: each AS using a steady down-path obtains a fair share
proportional to its steady up-path, and its ISD’s core path.

267

11 SIBRA

Efficient Bandwidth Usage via Statistical Multiplexing

Internet traffic often exhibits a cyclical pattern, with alternating levels of utilized
bandwidth. In situations of low utilization, fixed allocations of bandwidth for
steady and ephemeral paths that are unused would result in a waste of bandwidth.
SIBRA reduces such bandwidth waste through statistical multiplexing, i.e.,
unused steady and ephemeral bandwidth is temporarily given to best-effort
flows. A small amount of unallocated steady and ephemeral bandwidth still
remains to accommodate new steady and ephemeral bandwidth requests. As
more and more entities demand steady paths and their fair share of ephemeral
paths, SIBRA gradually squeezes best-effort flows and releases the borrowed
steady and ephemeral bandwidth up to the default allocations.

Renewal

End hosts can launch ephemeral path renewals to increase the reserved band-
width and/or extend the expiration time of the ephemeral path. Since ephemeral
reservations have a short lifetime, they are frequently renewed. Renewals
are launched using the old reservation, which contains the bandwidth class
of the reservation; therefore routers can rapidly decide on the fastpath how
much bandwidth they should allocate for the renewal, for instance if the band-
width increased, decreased, or remained the same. Reservations are given a
reservation index, incremented for each renewal of a specific ephemeral path.
Reservations can be renewed anytime before they expire, and the end host is
allowed to switch to the newer reservation at any time. However, the end host
is not allowed to use both the old and the renewed reservation at the same time;
Section 11.7.1 shows a mechanism to detect such misbehavior.

11.7 Priority Traffic Monitoring and Policing

Flows that exceed their reservations may undermine the guarantees of other
legitimate flows. An ideal monitoring algorithm should immediately catch
every such malicious flow. This, however, would be too expensive for line-rate
traffic in the Internet core. Instead, as the first line of defense, SIBRA relies
on edge ASes to perform fine-grained traffic monitoring. Edge ASes rely on
flow IDs to check each flow’s bandwidth usage and compare it against the
reserved bandwidth for that flow ID, which is stored by each AS locally during
the reservation request. Previous research has shown that per-flow slowpath
operations are feasible at the edge of the network [230].

Monitoring on transit ASes, however, needs to be processed on the fastpath.
To detect misbehaving ASes that purposely fail to regulate their own traffic,
SIBRA deploys a lightweight monitoring mechanism in transit ASes. First,
each AS monitors the bandwidth usage of incoming traffic from each neighbor

268

11.7 Priority Traffic Monitoring and Policing

AS and compares it against the total bandwidth reserved for that neighbor. Such
coarse-grained monitoring promptly detects a misbehaving neighbor that has
failed to correctly police its traffic.

Why Per-Neighbor Monitoring Is Insufficient

There are cases, though, when per-neighbor monitoring in transit ASes is
insufficient. Figure 11.9 depicts two flows originating in AS0, each having
reserved 5 Mbps. Flow 1 is malicious and sends traffic with 8 Mbps, while
flow 2 underuses its reservation. AS0 hence does not properly monitor its flows.
When AS1 performs per-neighbor monitoring, it can only notice that, in the
aggregate, it receives 10 Mbps from AS0 and sends 10 Mbps to AS2. However,
when the two flows diverge, AS2 detects flow 1 as malicious and holds AS1
responsible, although AS1 properly performed per-neighbor monitoring.

AS 1 AS 2

AS 3

AS 4

Reservation/Sending: 5/8 Mbps
Reservation/Sending: 5/2 Mbps

AS 0

flow 1

flow 2

Figure 11.9: Per-neighbor monitoring may label benign AS1 malicious.

For this reason, SIBRA additionally utilizes fine-grained probabilistic moni-
toring of individual flows at the transit ASes, using a recently proposed tech-
nique [255]. Each transit AS monitors, per given time interval, all the flows in
a number of randomly chosen bandwidth classes. Recall that the bandwidth
class of a flow is authenticated by the RTs in the packet header. If the average
bandwidth utilization of a flow during that time interval exceeds the flow’s
bandwidth class, the flow is classified as malicious and added to a blacklist,
preventing its renewal.

To localize the origin AS of the malicious flow, an AS informs the previous
AS of the misbehaving flow. In response, the previous AS can simply monitor
that specific flow explicitly. If the violation persists, the suspicious previous-hop
neighbor is likely to be malicious. Then, the AS can punish it, for instance, by
terminating their contract.

11.7.1 Flow Renewal Monitoring and Policing

A successful ephemeral path renewal replaces the old reservation, therefore the
renewal receives the same flow ID as the old reservation. However, SIBRA
paths allow for RTs with overlapping validity periods. Therefore, if multiple
renewals were to occur before the ephemeral path expires, the source would
be in possession of multiple sets of valid RTs: some corresponding to the

269

11 SIBRA

ephemeral path with the previous bandwidth class and old expiration time, and
the others corresponding to the new values for bandwidth class and expiration
time, along the same path. Since all sets of RTs are associated with the same
flow ID, routers would overwrite their per-flow entries with the new bandwidth
class.

A malicious end host could thus exploit renewals by using both sets of RTs,
old and new, during the overlapping validity time of the RTs, thus using more
bandwidth than the reserved amount. To prevent such misuse, end hosts are
not allowed to use old RTs after having used the renewed RTs. When renewals
use the same bandwidth class as the old reservation, simultaneous use of old
and new RTs is detected by the per-class monitoring mechanism (as described
above) since the usage is jointly accounted under the same flow ID.

We now consider the case when the renewed bandwidth class is different
from the old one. The edge AS performs per-flow stateful inspection and is
supposed to filter out traffic that violates the sending rule. Therefore, the edge
AS can be held accountable by other ASes for improperly filtering traffic. In
transit ASes, however, we propose a probabilistic approach for detecting this
type of misbehavior. ASes maintain one Bloom filter [36] per currently active
expiration time and bandwidth class. Since an RT is valid for at most 16 seconds
and the time granularity is 4 seconds (i.e., SIBRA tick), four Bloom filters are
needed per bandwidth class to record flow IDs that use the bandwidth class
within that time period. The details about time discretization are discussed in
the SIBRA paper [22]. For an incoming packet with a reservation in a monitored
class C, ASes simply store the tuple xflow ID, reservation indexy in the Bloom
filter of C. By checking these Bloom filters, each AS can notice whether a flow
ID uses two different bandwidth classes during a time period.

The monitoring algorithm is further optimized as follows. SIBRA selects
a small number of classes to monitor at a given moment in time, therefore
ASes store Bloom filters only for the few monitored traffic classes. In addition,
SIBRA does not investigate all Bloom filters: we observe that, when the renewed
bandwidth is much higher or much lower than the previous bandwidth, using
both the old and new reservations would incur an insignificant bandwidth
overuse. Therefore, if a certain reservation index is used in class C, SIBRA
investigates only the Bloom filters of the classes whose bandwidth values are
comparable to C’s bandwidth (the comparability of classes is discussed in the
SIBRA paper [22]). SIBRA investigates whether in these Bloom filters an index
reservation index` i is present, where i P t0,1, . . . ,15u chosen randomly (i“ 0
detects whether the end host maliciously reuses the same reservation index). If
found, ASes increment a violation counter for the source of that flow ID. The
violation counter allows for Bloom filter false positives. When the violation
counter exceeds a threshold, an alarm is raised for that sender. Therefore, the
more packets an attacker sends, the higher the probability of detection.

270

11.7 Priority Traffic Monitoring and Policing

11.7.2 Dealing with Failures

While bandwidth guarantees along fixed network paths allow for a scalable
design, link failures can still disrupt these paths and thus render the reservations
futile. In fact, leaf ASes and end hosts are interested in obtaining a bandwidth
guarantee rather than obtaining a specific network path for their traffic.

SIBRA deals with link failures using two mechanisms: (a) a failure detection
technique to remove reservations along faulty paths, and (b) a failure tolerance
technique to provide guarantees in the presence of failures. For (a), SIBRA
uses short expiration times for reservations and keep-alive mechanisms. Steady
paths expire within 3 minutes of creation, but leaf ASes can extend the steady
paths’ lifetime using keep-alive messages. Ephemeral paths have a default
lifetime of 16 seconds, which can be extended by source end hosts through
renewals. Unless keep-alive messages or renewals are used, reservations are
removed from the system within their default expiration time. By construction,
a new reservation cannot be created on top of faulty paths. For (b), SIBRA
allows leaf ASes to register multiple disjoint steady paths. We also envision
source end hosts being able to use multiple disjoint ephemeral paths to the same
destination.

11.7.3 Dynamic Inter-domain Leased Lines (DILLs)

Businesses use leased lines to achieve highly reliable communication links.
ISPs implement leased lines virtually through reserved resources on existing
networks, or physically separated through dedicated network links. Leased
lines are very costly, can take weeks to set up, and are challenging to establish
across several ISPs.

A natural desire is to achieve properties similar to traditional leased lines,
but more efficiently. GEANT offers a service called “Bandwidth on Demand”
(BoD), which is implemented through the Inter-Domain Controller Protocol [67]
to perform resource allocations across the participating providers [92]. Although
BoD is a promising step, the allocations are still heavyweight and require per-
flow state.

With SIBRA’s properties, ISPs can offer lightweight dynamic inter-domain
leased lines (DILLs). A DILL can be composed of two longer-lived steady
paths, connected through a core path, or dynamically set up with an ephemeral
path that is constantly renewed. Thanks to the lightweight operation of SIBRA,
DILLs can be set up within a packet round-trip (source-destination-source)
setup message and are immediately usable. Our discussions with operators of
availability-critical services have revealed that the DILL model has sparked
their interest.

To enable long-term DILLs, valid on the order of weeks, the concept of
ephemeral paths in SIBRA could be reframed: long-term DILLs could use

271

11 SIBRA

the same techniques for monitoring and policing as ephemeral paths, but they
would also introduce new challenges. To enable long-term DILLs, ISPs need
to ensure bandwidth availability even when DILLs are not actively used, as
opposed to ephemeral bandwidth, which can be temporarily used by best-effort
flows. For this purpose, ISPs could allocate a percentage of their link bandwidth
for DILLs, besides steady, ephemeral, and best-effort paths. Additionally, for
availability in the face of link failures, ISPs would need to consider active
failover mechanisms. For instance, in architectures that provide path choice,
ISPs could leverage disjoint multipath reservations concentrated in a highly
available DILL. We leave a detailed design to our future work.

11.8 Use Cases

With the flexible lifetime of DILLs, ranging from tens of seconds to weeks
on-demand, SIBRA brings immediate benefits to applications where guaranteed
availability matters. These applications comprise critical infrastructures, such
as financial services and smart electric grids, as well as business applications,
such as videoconferencing and reliable data sharing in health care. Setting up
leased lines in many cases may take several weeks and may be prohibitively
expensive: it is costly to install leased lines between each pair of domains, and
also to connect each domain through a leased line to a central location in order
to build up a star topology.

Critical Infrastructures

Financial services, for instance transaction processing from payment terminals,
would become more reliable when using SIBRA DILLs: since DILLs guarantee
availability even in the presence of adversarial traffic, payment requests and their
confirmations would always obtain a guaranteed minimum bandwidth. Other
use cases are connections to ATMs, which would be too costly to realize with
leased lines. DILLs could also be used for remote monitoring of power grids:
a guaranteed minimum bandwidth would be suitable to deliver the monitored
parameters, independent of malicious hosts exchanging traffic. Telemedicine is
another use case of practical relevance: the technology uses telecommunication
to provide remote health care — often in critical cases or emergency situations
where interruptions could have severe consequences.

Business-Critical Applications

Videoconferencing between the remote sites of a company gains importance
as a convenient way to foster collaboration while reducing travel costs. Short-
lived and easily installable DILLs provide the necessary guaranteed on-demand
bandwidth for reliably exchanging video traffic. Another application is reliable

272

11.9 Discussion

on-demand sharing of biomedical data for big-data processing, complementing
the efforts to improve health care quality and cost in initiatives such as Big Data
to Knowledge launched by the US National Institutes of Health (NIH) [164].

11.9 Discussion

11.9.1 The Choice of Bandwidth Ratios on SIBRA Links

Recall that in Section 11.3, for the setting where a SIBRA connection is the
default one, we assigned 85% of a link’s capacity to SIBRA, and left 15%
to best-effort traffic. The reason for this choice is that the majority of traffic
constitutes persistent high-bandwidth connections: for example in Australia,
Netflix’s video connections contribute to more than 50% of the entire Internet
traffic [104]. Given an additional amount of traffic from other large video
providers such as YouTube and Facebook, we estimate ephemeral paths to
require roughly 70–90% of a link’s bandwidth.

Best-effort, however, is still important for some types of low-bandwidth
connections: email, news, and part of the SSH traffic could continue as best-
effort traffic, totaling 3.69% of the Internet traffic [146], as could DNS traffic
totaling 0.17% of the Internet traffic [146]. In addition, very short-lived flows
(that is flows with a lifetime less than 256 ms) with very few packets (the median
flow contains 37 packets [241]) are unlikely to establish SIBRA reservations,
simply to avoid the additional setup latency. Such flows amount to 5.6% of the
Internet traffic [241] and can thus also be categorized under best-effort.

Since it is hard to specify the actual bandwidth proportions precisely, we use
85% and 15% as initial values and note that these values can be re-adjusted at
any point in the future.

We recall from Section 11.6 that, in addition to the parameter choice, SIBRA’s
statistical multiplexing between the traffic classes helps to dynamically balance
the traffic. We expect that in particular the long-lived reservations are not
always fully utilized, in which case best-effort traffic can be transmitted instead.
Consequently, an end host can by default use SIBRA (with constant bit rate)
and multipath best-effort (with congestion control) to use up the remaining
bandwidth.

11.9.2 Per-Flow Stateless Operations Are Necessary

To understand the amount of per-flow storage state required on the fastpath, we
investigate the number of active flows per second as seen by a core router in
today’s Internet. We used anonymized one-hour Internet traces from CAIDA,
collected in July 2014. The traces contain all the packets that traversed a

273

11 SIBRA

 160 000

 180 000

 200 000

 220 000

 240 000

 0 50 100 150 200 250 300 350 400 450
 3

 3.5

 4

 4.5

 5

N
r o

f f
lo

w
s

Th
ro

ug
hp

ut
 (G

bp
s)

Time (s)

Nr of flows over time
Average throughput over time

Figure 11.10: The number of active flows every second and their throughput,
observed on a 10 Gbps Internet core link.

10 Gbps Internet core link of a tier-1 ISP in the United States, between San Jose
and Los Angeles.

Figure 11.10 depicts our findings as the number of active flows on the core
link at a granularity of 1 second, for a total duration of 412 seconds. We observe
that the number of flows varies around 220,000, with a boundary effect at the
beginning of the data set. These flows amount to a throughput between 3 and
4 Gbps — a link load of 30% to 40%. A large core router switching 1 Tbps
(with 100 such 10 Gbps links) would thus observe 22ˆ106 flows per second
in the normal case, considering a link load of only 40%. In an attack case,
adversaries could greatly inflate the number of flows by launching connections
between bots, as in Coremelt [231]. Schuchard et al. already analyzed attacks
that can exhaust the router memory [219]. All these results suggest that storing
per-flow state in the fastpath can be vulnerable to resource exhaustion attacks.

11.9.3 Case Study: Ephemeral Bandwidth on Core Links

A central point of SIBRA is to guarantee a sufficient amount of bandwidth
using today’s infrastructure, even for reservations that span multiple ISDs.
A central question is how much bandwidth an end domain could minimally
obtain if globally all domains attempt to obtain their maximum fair share. To
investigate this point, we considered a scenario with Australia as destination,
and all non-Australian leaf ASes in the world reserving ephemeral bandwidth
to Australia. We picked Australia because with its 24 million inhabitants,
it represents a major economy, and it has already experienced infrastructure

274

11.9 Discussion

1

2

3

4

5

6
7

8

1280 960

2560

6000
640

3600

Capacity (Gbps)

(2) Australia - Papua
(1) SEA-ME-WE 3

(3) PIPE - Pacific Cable-1
(4) Australia - Japan Cable
(5) Gondwana-1
(6) Southern Cross Cable Network
(7) Telstra Endeavor
(8) Tasman-2

New Guinea-2

1.12 1.12

Figure 11.11: Australia submarine link map, including link capacities.

congestion in today’s Internet [104]. While its geographical location hinders
laying new cables, Australia is well suited for our study aiming to determine
a lower bound on the amount of bandwidth SIBRA core links can expect.
Other countries, especially those situated on larger continents, typically feature
higher-bandwidth connectivity, as laying cables on land is easier than in the
ocean.

Figure 11.11 illustrates the current submarine link map of Australia, including
the name and capacity of the links.7 The entire traffic traverses these links.
For simplicity, we assume guaranteed bandwidth is split equally between leaf
ASes. In practice, however, the bandwidth is proportional to the size of the
steady paths of the leaf ASes (Section 11.3). We considered two cases: (a) the
worst case, i.e., when all reservations are squeezed over the same link — in our
case, we chose the highest-bandwidth cable, namely the Australia-Japan Cable
(6 Tbps), and (b) the best case, i.e., when the reservations are distributed across
all cables (totaling 15.04 Tbps). In contrast to other architectures, SIBRA’s

7http://www.submarinecablemap.com/ illustrates the submarine link map. The link ca-
pacities were obtained from various resources, e.g., the Australia-Japan Cable capacity from
http://www.ajcable.com/company-history/.

275

http://www.submarinecablemap.com/
http://www.ajcable.com/company-history/

11 SIBRA

underlying architecture, SCION, enables the use of multipath communication
for the traffic between a source and a destination, along several core links.

We have determined the number of leaf ASes in the world, using the AS
topology from CAIDA8, and counted 32,428 non-Australian leaf ASes using the
AS number and location9. After the analysis, we found that each non-Australian
leaf AS obtains a fair share of (a) 185.02 Mbps («157 Mbps for SIBRA traffic),
or (b) 463.86 Mbps («394 Mbps for SIBRA traffic) for traffic to/from Australia.
We thus conclude that SIBRA’s fair-sharing scheme offers a substantial amount
of bandwidth through an efficient use of the current Internet infrastructure.
Should this amount be insufficient, an AS could purchase additional bandwidth
for a specific destination from its core AS.

The prospects are even brighter: considering the planned undersea physical
infrastructure development, the capacity of the cables connecting Australia with
the rest of the world will increase by 168 Tbps by the beginning of 2018. With
such an increase, the fair share on SIBRA’s core links becomes 5.64 Gbps per
leaf AS in Case (b).

11.10 Further Reading

We review some major capability-based DDoS protections, and summarize
resource allocation and reservation mechanisms.

Capability-Based Mechanisms

Capability-based mechanisms [10, 114, 150, 183, 196, 258, 260] aim at isolating
legitimate flows from malicious DDoS attack traffic. Network capabilities are
access tokens issued by on-path entities (e.g., routers and destination) to the
source. Only packets carrying such network capabilities are allowed to use
a privileged channel. Capability-based schemes, however, require additional
defense mechanisms against denial-of-capability (DoC) attacks [14] and against
attacks with colluding hosts or legitimate-looking bots [129, 231]. To address
DoC attacks, TVA [260] tags each packet with a path identifier based on the
ingress interface of the traversing ASes. The path identifier is used to perform
fair queueing of the request packets at the routers. However, sources residing
further away from the congested link will suffer a significant disadvantage.
Portcullis [196] deploys computational puzzles to provide per-computation
fair sharing of the request channel. Such proof-of-work schemes, however,
are too expensive to protect every data packet. Moreover, Portcullis does not
provide the property of botnet-size independence. Floc [150] fair-shares link
bandwidth of individual flows and differentiates between legitimate and attack

8http://www.caida.org/data/as-relationships/
9http://data.caida.org/datasets/as-organizations/

276

http://www.caida.org/data/as-relationships/
http://data.caida.org/datasets/as-organizations/

11.10 Further Reading

flows for a given link. However, such coarse-grained per-AS fair sharing may
not always be effective; in particular, low-rate attack flows can often not be
precisely differentiated. CoDef [151] is a collaborative defense mechanism
in which a congested AS asks the source ASes to limit their bandwidth to a
specific upper bound and to use a specific path. Source ASes that continue
sending flows that exceed their requested quota are classified as malicious.
CoDef does not prevent congestion in the first place, but instead responsively
handles one congested link at a time. Since congestion can still occur on links,
sources cannot be given a guarantee of reaching a destination. STRIDE [114] is
a capability-based DDoS protection architecture that builds on several concepts
from SCION. Although STRIDE shares similarities with SIBRA (steady paths
and ephemeral paths), STRIDE lacks intra-core and inter-ISD communication
guarantees; STRIDE’s intra-domain guarantees are built on the assumption
of congestion-free core networks. Moreover, STRIDE lacks monitoring and
policing mechanisms, as well as an implementation.

Resource Allocation

Several queuing protocols [193, 222, 230] have been proposed to approximate
fair bandwidth allocation at routers. Their correctness, however, relies on
the trustworthiness of the routers and flow identifiers. The Path Computation
Element (PCE) architecture [84, 244] computes inter-AS routes and enables
resource allocation across AS boundaries in Generalized Multi-Protocol Label
Switching (GMPLS) Traffic Engineered networks. However, the discovery of
inter-AS PCE path fragments discloses information about other cooperating
ASes, such as the internal topology. Some ASes will be reluctant to share this
information due to confidentiality concerns.

Resource Reservation

RSVP [264] is a signaling protocol for bandwidth reservation. Because RSVP is
not designed with security in mind, the reservation may fail due to DDoS attacks.
RSVP requires the sender (e.g., a host or an AS when RSVP aggregation is
used as specified in RFC 3175 [17]) to make an end-to-end reservation to the
receiver(s), causing a large number of control messages in the network and
large state on intermediate routers.

277

12 OPT and DRKey

ADRIAN PERRIG, RAPHAEL M. REISCHUK,
DOMINIK ROOS, PAWEL SZALACHOWSKI

This chapter presents Origin and Path Trace (OPT) — lightweight, scalable, and
secure protocols for shared key setup, source authentication, and path validation.
In-network source authentication and path validation are fundamental primitives
for constructing higher-level security mechanisms such as DDoS mitigation,
path compliance, packet attribution, or protection against flow redirection.

We also describe an extension called Retroactive Path Trace that helps the
destination to perform path validation with retroactive key setup and to detect
coward attackers with small, constant overhead in the packet header, which
enables implementation on software routers with minimal performance impact.

We further introduce the Dynamically Recreatable Key (DRKey) protocol, an
important mechanism for enabling routers to efficiently derive secret keys “on
the fly” for any destination, without requiring per-destination state.

The present chapter is based on the paper “Lightweight Source Authentication
and Path Validation” by Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia,
Soo Bum Lee, Yih-Chun Hu, and Adrian Perrig, which was published in the
Proceedings of ACM SIGCOMM 2014 [132]. A formal analysis of the OPT
protocols discussed in the chapter was completed by Zhang et al. [263].

Chapter Contents

12.1 Introduction . 280

12.2 OPT Problem Definition . 281

12.3 OPT Design Overview . 283

12.4 OPT Protocol Description . 286

12.5 Dynamically Recreatable Keys (DRKey) 291

279

12 OPT and DRKey

12.1 Introduction

Source authentication and path validation are useful primitives to help mitigate
various network-based attacks, such as DDoS, address spoofing, and flow
redirection attacks [63]. Path validation, in particular, provides a way to enforce
path compliance according to the policies of ISPs, enterprises, and data centers.
End hosts and ISPs desire to validate service level agreement compliance
regarding data delivery in the network: Did the packet truly originate from
the claimed client? Did the client select a path that complies with the service
provider’s policy? Did the packet indeed travel along the path selected by the
client?

Unfortunately, the current Internet provides almost no means for source
authentication and path validation by routers or end hosts, so numerous attack
surfaces are opened up. For example, a malicious ISP may forward a packet
on an inferior path while claiming to its client that it forwarded the packet on
the premium path. Alternatively, a malicious router may inject packets with a
spoofed source address to incriminate a victim source node as being responsible
for having sent an excessive number of packets. A malicious router may simply
alter the contents of received packets as well. The inability to detect such
attacks near the point of deviation wastes downstream resources.

End-to-end encryption and authentication mechanisms, such as TLS, do not
solve any of the above issues, since they are agnostic regarding which path the
packet takes. A stronger approach is needed that enables routers and destinations
to perform source authentication and path validation. Existing solutions either
require extensive overhead, or only partially address fundamental problems,
affecting both feasibility and practicality in the existing network. For example,
ICING [182] addresses both source authentication and path validation, but it
requires each intermediate router on a path to store and look up keys shared with
other routers; ICING requires 42 bytes per verifying router in the packet header.
Furthermore, ICING requires each router to calculate a message authentication
code (MAC) for all other routers on the path.

In contrast, the OPT protocol suite does not require any per-client state on
routers; it requires only 16 bytes per AS hop, and a single MAC in the packet
header. The computational overhead for an on-path AS is a PRF computation,
irrespective of the path length. Moreover, the Retroactive-PathTrace instan-
tiation (Section 12.4.2) preempts coward attacks [161], where an adversary
only attacks when it is certain that the attack will not be detected. The OPT
protocol suite, however, offers reduced security in the case of a malicious sender
colluding with a malicious AS on the path. Since in the common case sender
and receiver trust each other, the performance gain of Op1qMAC operation per
AS instead of Opnq is worth the tradeoff.

280

12.2 OPT Problem Definition

12.2 OPT Problem Definition

Desired Security Properties

• Source authentication and data authentication: The destination and
each intermediate AS should be able to determine whether the packet
indeed originated from the claimed source and whether the packet content
has not been altered en route. In this chapter, we let source authentication
include data authentication.

• Path validation: The source, intermediate ASes, and the destination
should be able to validate that the packet has indeed traversed the path
selected by the source. Successful path validation ensures that the packet
has traversed each honest AS on the path in the correct order.1

Elided Security Properties

• No packet delivery guarantee: As each router can decide at any point
whether or not to forward packets, it is not the purpose of path validation
to guarantee that packets will be delivered to the specified destination.

• No detection of packet siphoning: A misbehaving ASm on the source-
selected path can siphon packets and send them over a separate channel
to a remote entity. Since ASm can still forward the packet to ASm`1, this
attack is not detected. We consider ASm to be obeying the protocol as
long as it performs all protocol-compliant operations with the packet.

• No locating of packet-altering and packet-dropping routers: Locat-
ing routers that alter or drop packets is not the goal of authentication or
path validation; it is the goal of fault localization — another challenging
problem especially in inter-domain settings [21, 265]. Since path valida-
tion is a simpler problem than fault localization, the goal of this chapter is
to present a more efficient protocol than heavier-weight fault-localization
protocols.

1Unfortunately, stronger properties are challenging to achieve efficiently (e.g., without utilizing
trustworthy computing hardware on routers). Thus, a malicious AS could misbehave by
sending a packet through an additional set of ASes, then removing all traces of these
additional ASes, and finally sending the packet on the regular path toward the destination.
Besides increased latency or additional traffic sent on the affected network links, such
misbehavior does not leave any traces that are detectable by the end hosts. Also, colluding
ASes can misbehave: if malicious ASes ASm and AS1m exchange their secret keys with each
other, then they can perform seemingly valid cryptographic operations on behalf of each
other. Consequently, one malicious AS can perform the cryptographic computations on
behalf of the other and thus claim to have forwarded the packet in the place of the other.

281

12 OPT and DRKey

Adversary Model

We consider a computationally bounded network attacker that deviates from the
protocol and violates the protocol’s security goals by means of one (or more) of
the following attacks.

• Packet alteration: A malicious AS can alter any part of the packet, such
as source address, header information, or the payload data.

• Packet injection: A malicious AS can fabricate packets and send them
towards destinations of its choice. A packet replay attack is a special
case of packet injection.

• Path deviation: A malicious AS may cause packets to be forwarded
along a path other than the path previously selected by the source. We
subdivide this attack as follows:

– Path detour: Malicious ASm causes a packet to deviate from the
intended forwarding path, but the packet later returns to the correct
downstream ASm`1 to resume traversal of all ASes on the intended
path.

– Router skipping: A malicious AS redirects the packet and skips
other AS(es) on the path. Thus, some ASes on the intended path do
not forward the packet.

– Out-of-order traversal: An adversary causes path deviations such
that ASes on the intended path are not traversed in the right order.

• Coward attack: A coward attack [161] is an attack that is launched by
an adversary only when the adversary believes that the attack cannot be
detected. For example, an attacker diverts traffic only when the protocol
is inactive.

• Denial-of-service (DoS) attack: As part of DoS attacks, we consider
memory and computation exhaustion attacks on routers performing
source authentication and path validation.

• Collusion: Protocol participants may collude to carry out any of the
attacks listed above. For example, two or more intermediate ASes may
collude to claim the use of an expensive path for monetary profit, or the
source may collude with an intermediate AS to spoof authenticators for
its downstream ASes if the destination prefers/trusts skipped ASes. Also,
both the source and the destination could collude with some intermediate
ASes to frame another AS on the path by not forwarding packets to it.

In the paper [132] potential attacks against OPT as well as defense mecha-
nisms are explored. Additionally, Zhang et al. have performed a formal analysis
of the OPT protocol suite [263].

282

12.3 OPT Design Overview

12.3 OPT Design Overview

We consider a setting in which source HS in AS S sends a packet to destination
HD in AS D along a sequence of ASes ASi. We refer to HS, HD, and the ASes
ASi as tracing entities.

One of OPT’s crucial requirements is to avoid storing per-flow state on
the intermediate routers; unlike prior approaches that require each router to
maintain a secret key for each flow, our design enables routers to derive the
secret keys on the fly using an efficient pseudorandom function in combination
with local AS-level secrets that are stored at the routers.

In a nutshell, source authentication and path validation, without requiring
routers to maintain per-source or per-flow state, are achieved as follows:

1. In the packet header, source HS includes the hash of the packet payload
HpPq to help routers quickly verify or update OPT information, while
avoiding a hash computation over the entire packet.

2. On demand, a router in ASi generates a key Kσ
ASi

using an efficient
symmetric-cryptographic operation that requires as input only ASi’s local
secret SVASi and a special value called SESSIONIDσ , which the source
has added to the packet header. Consequently, generating deterministic
keys this way is not only stateless, but can also be faster than storing or
retrieving secrets from main memory.2

3. Each ASi extends a special authentication field in the packet header, the
Path Verification Field (PVF), by performing one MAC operation using
the key derived in the previous step. The resulting MACs are nested in a
verification chain that is later used for path validation.

Not storing per-source or per-flow state on intermediate routers makes OPT
robust against DoS attacks that are based on state exhaustion. Including the hash
of the packet payload HpPq in the packet header enables a second important
optimization: intermediate routers can parallelize the computation of MACs
and packet hashes, or sporadically validate HpPq.

12.3.1 OPT Protocol Overview

We provide a brief overview of the OPT protocol in this section to provide
intuition on how the protocol works. In Section 12.4 a more detailed view of

2Computing an efficient pseudorandom function (PRF) is faster than fetching a byte from main
memory: a deterministic key derivation using Intel’s AESni takes around 50 cycles, whereas
a main memory access requires on the order of 200 cycles.

283

12 OPT and DRKey

the OPT protocol is provided. The underlying DRKey key derivation protocol
is described in Section 12.5. The notation used in this chapter is summarized in
Table 12.1.

We assume that the source and destination entities that perform the tracing
of intermediate ASes can establish a secret key between themselves. Several
approaches exist for setting up an end-to-end secret key: TLS if one of the end
hosts is an HTTPS server, or through IPsec. SCION offers a shared symmetric
key between end hosts (described in Section 12.5) to support such a key setup.
Alternatively, trust on first use (TOFU) can be used in conjunction with SSH to
set up a key, or self-certifying identifiers as public keys [7, 170, 179, 247], or
self-validation using an anonymous communication service [93].

1. Key setup: OPT runs in sessions. In each session σ , source HS selects a
path PATHσ over which it intends to send packets to destination HD. The
source then generates a session with the identifier SESSIONIDσ .
We assume that HS and HD share a secret key. To distinguish the key
shared via an out-of-band mechanism such as TLS and the key shared via
the DRKey infrastructure, we introduce two keys: Kσ

HS
and Kσ

HSHD
. Key

Kσ
HS

is the key shared out-of-band, which would not require trusting the
DRKey infrastructure. Key Kσ

HSHD
is obtained via DRKey and derived as

shown in Equation 12.5. If the DRKey infrastructure is fully trusted, then
Kσ

HS
can be equal to Kσ

HSHD
.

To obtain the keys Kσ
ASi

for each AS on the path, HS queries its local cer-
tificate server. We assume a mechanism for encrypted and authenticated
communication between HS and its local certificate server.

2. Generation of verification fields: HS uses the path information to pre-
compute for each ASi on PATHσ an origin verification field OVi. HS
generates an additional common path verification field PVF that is ini-
tialized using Kσ

HS
.

3. Verification and update by intermediate routers: The source inserts
SESSIONIDσ into the OPT extension header of packets within session
σ so that each intermediate ASi on PATHσ can use the DRKey protocol
to dynamically compute its symmetric key Kσ

ASi
shared with HS and HD

using SESSIONIDσ as shown in Equation 12.6.
Using the symmetric key Kσ

ASi
and PVF, each intermediate ASi can re-

compute and validate its verification field OVi — if it matches, ASi has
successfully validated the authenticity of the source and the content of
the packet, and validated the path traversed so far. ASi then updates the
common PVF field in the header by applying a MAC operation with
the corresponding key. This process helps subsequent ASes and the
destination validate that each AS on the path has indeed processed the
packet.

284

12.3 OPT Design Overview

HS Source entity
HD Destination entity
Kσ

A Symmetric key shared among HS, HD, and AS A for a single
session σ , derived as shown in Equation 12.6

Kσ
HS

Symmetric key shared between HS and HD for a single session σ ,
generated by HS

Kσ
HSHD

Symmetric key shared between HS and HD for a single session σ ,
generated by AS as shown in Equation 12.5

KAÑB Symmetric key shared between AS A and AS B
Kp

AÑB Symmetric key shared between AS A and AS B for protocol p
Kp

AÑB:HB
Symmetric key shared between AS A and HB in AS B for
protocol p

Kp
A:HAÑB:HB

Symmetric key shared between HA in AS A and HB in AS B for
protocol p

Kp
AÑB:HB,C:HC

Symmetric key shared between AS A, HB in AS B and HC in AS C
for protocol p

SVA AS A’s local secret value
SESSIONIDσ Session identifier of session σ

PATHσ Session σ ’s path information
PVF Field enabling HD to verify the path

PVFHS Field enabling ASi and HD to verify the path
PVFHD Field enabling HD to confirm the actual path

OVi Field enabling ASi to validate the packet sender
OPVi Field enabling ASi to verify both the packet sender and path

PRFKp¨q Pseudorandom function using key K
MACKp¨q Message authentication code using key K

Hp¨q Cryptographic hash operation
P Network packet payload

DATAHASH Hash of the packet’s payload (i.e., HpPq)

Table 12.1: Notation used in this chapter. The arrow notation in the subscript of
keys indicates the secret value used to derive the key — the secret
key associated with the entity on the left side of the arrow is used
for key derivation. For all the keys with an arrow subscript listed in
the table, AS A’s secret value SVA is used for their derivation. The
detailed key derivation operations are explained in Section 12.5.

4. Verification by the destination: The destination finally recomputes the
verification fields using all the symmetric keys shared with the ASes
on the path. Successful verification indicates source and packet content
authentication as well as path validation.

285

12 OPT and DRKey

OriginValidation

DATAHASH (128 bits)

SESSIONID (128 bits)

OV1 (128 bits)

OV2 (128 bits)
...

OVD (128 bits)

PathTrace

DATAHASH (128 bits)

SESSIONID (128 bits)

PVF (128 bits)

Figure 12.1: The packet header formats for OriginValidation (left) and Path-
Trace (right).

12.4 OPT Protocol Description

The DRKey protocols and the techniques we introduce in this section span
a protocol family of source authentication and path validation with varying
assumptions and properties. Unfortunately, exploring the entire design space is
out of scope for this chapter; we thus present only three protocol instantiations:

1. OriginValidation: for source authentication by each AS (§12.4.1)
(HS and HD trust each other)

2. PathTrace: for path validation by the destination (§12.4.2)
(HS and HD trust each other)

3. Origin and Path Trace (OPT): for source authentication and path vali-
dation by each AS and the destination (§12.4.3)
(HS and HD may not trust each other)

12.4.1 OriginValidation

Origin validation enables each intermediate AS and the destination to perform
source authentication using MACs computed over the hash of the packet. For
efficient authentication, the source includes the following fields in the packet
header (see left-hand side of Figure 12.1):

• DATAHASH : a hash HpPq of the packet payload P.

• SESSIONID : a value chosen by HS.

• OVi and OVD : the origin verification fields, message authentication
codes that the source creates for each intermediate AS and the destination.
We let OVi “MACKσ

ASi
pHpPqq be computed over DATAHASH using key

Kσ
ASi

that ASi shares with HS; and similarly OVD “MACKσ
HS
pHpPqq.

286

12.4 OPT Protocol Description

Origin validation provides efficient MAC verification using the DATAHASH
field without requiring each intermediate AS to compute the hash over the entire
packet.

When intermediate AS1 receives a packet from source HS, it computes the
symmetric key Kσ

AS1
that it shares with HS using SESSIONIDσ from the packet

header and its local secret SVAS1 . AS1 then computes MACKσ
AS1
pDATAHASHq

and checks whether it is the same as OV1 (as contained in the packet header).
If so, AS1 is assured that the packet indeed originated from the claimed source
HS, and forwards the packet to AS2. The other intermediate ASes ASi and the
destination HD perform similar operations.

12.4.2 PathTrace

PathTrace helps the source and destination validate that a received packet indeed
traversed the source-selected path. This main objective is achieved by the path
validation field (PVF), a packet header field containing a nested MAC that
intermediate ASes update as they forward the packet. As indicated by the
right-hand side of Figure 12.1, only the DATAHASH, SESSIONID, and PVF
fields are used for PathTrace. Therefore, the packet overhead does not depend
on the path length.

We next describe how PathTrace enables the source and the destination to
validate the path. We start with the destination.

PathTrace for Destination

To enable only the destination to validate the path, the source generates the
initial PVF value, PVF0, which is a MAC of DATAHASH using the shared
symmetric key between the source and the destination. The source initializes
the PVF value in the packet header with the initial PVF0:

PVF “ PVF0 “MACKσ
HS
pDATAHASHq (12.1)

Each intermediate ASi on the path overrides the PVF field in the packet header
with its own augmented PVFi value. To this end, the AS first fetches the
previous PVF value PVFi´1 from the packet header and then applies a MAC
using its local key Kσ

ASi
. More precisely, the AS updates the PVF field in the

packet header as:

PVF “ PVFi “MACKσ
ASi
pDATAHASH } PVFi´1q (12.2)

The symmetric key Kσ
ASi

is shared with both the source and the destination
according to the key setup protocol in Section 12.5. Hence, upon receiving a
packet, the destination first recreates the nested MACs (here shown for a path

287

12 OPT and DRKey

Origin and Path Trace

DATAHASH (128 bits)

SESSIONID (128 bits)

PVF (128 bits)

TIMESTAMP (32 bits)

OPV1 (128 bits)

OPV2 (128 bits)
...

OPVD (128 bits)

Figure 12.2: OPT header. Source HS initializes all fields; intermediate ASes
update only the PVF field.

of two ASes with keys Kσ
AS1

and Kσ
AS2

, respectively):

PVF1 “ MACKσ
AS2
pDATAHASH } MACKσ

AS1
pDATAHASH } MACKσ

HS
pDATAHASHqqq

(12.3)
If PVF1 is the same as PVF in the packet header, the destination can be sure
that the packet was indeed delivered on the source-selected path. Otherwise,
the destination drops the packet.

PathTrace for Source

To help the source authenticate that its packet is delivered to the intended desti-
nation using the source-selected path, the destination forwards the final PVF
value and hash from the received packet header back to the source, authenticated
with a key shared between the source and destination:

DÑ S : DATAHASH,MACKσ
HSHD

pDATAHASH } PVFq (12.4)

Upon receiving this information, the source performs the validation by re-
constructing the nested MACs using DATAHASH as shown in Equation 12.3 and
by comparing it with the received value. A successful validation indicates that
the packet was indeed delivered on the source-selected path to the destination.

Retroactive-PathTrace

Retroactive-PathTrace supports path validation without the apparent key setup
process in advance. Instead, it utilizes Retroactive-DRKey (see Section 12.5),
which can run after the session has started. This allows the source and destina-
tion to immediately start sending traffic without initial latency caused by the
key setup.

288

12.4 OPT Protocol Description

Retroactive-PathTrace requires the destination to store information for each
received packet to enable later checking. More precisely, the destination stores
the tuple (SESSIONIDσ , DATAHASH, PVF) for each packet. When the desti-
nation wants to validate the path, it requests the source to initiate Retroactive-
DRKey so that intermediate ASes reveal the keys that were used for the received
packets. Then the destination can check the PVF fields and detect coward at-
tacks. The source can independently initiate the retroactive process as well.

12.4.3 Origin Validation and Path Trace

In this section, we introduce OPT, which combines OriginValidation and Path-
Trace such that all entities (including intermediate ASes) on the path can
perform both source authentication and path validation when they trust the
source. We assume that all the ASes in a session are loosely time synchronized
(within a few milliseconds), e.g., using NTP [175] or Roughtime [101]; see
also Section 7.7 on Page 159.

Figure 12.2 illustrates the OPT header format. In addition to DATAHASH,
SESSIONID, and PVF, an OPT header includes the following fields to enable
each intermediate AS to perform path validation.

• TIMESTAMP : the time when HS creates the OPT packet. This mitigates
timing-based attacks (such as replay attacks).

• OPVi : Origin and Path Verification field. OPVi is a MAC that enables
all entities on the path to perform path validation.

The SOURCE INITIALIZATION function in Algorithm 9 on the next page
describes how the source initializes the OPT header fields. Each OPV field
includes the following as inputs.

• Previous OPV: Including OPVi´1 in the computation of OPVi supports
the detection of malicious intermediate ASes that forward the packet to a
benign AS, which is not specified by the source but follows the protocol.

• Previous AS identifier: the OPV field by itself cannot support entities
in detecting the packet injection attack. Hence, we include the identifier
of the previous AS from which each entity receives the packet.

• Timestamp: This field mitigates authenticator cloning attacks. Con-
sider an example where packet Pcrt is expected to be sent along the
source-selected path PATHcrt , the source previously sent packet Pold on
PATHold , and Pcrt and Pold have the same payload. Consider AS ASbad
that is in both PATHcrt and PATHold such that PATHcrt “ tAS1,AS2, . . . ,
ASbad , ASbad`1, . . . ,ASnu and PATHold “ tAS11, AS12, . . . ,ASbad ,AS1bad`1,
. . . ,ASmu. In this scenario, ASbad can replace tASbad`1, . . . ,ASnu with
tAS1bad`1, . . . ,ASmu in PATHcrt and all the corresponding fields in the
Pcrt header with those in Pold . Therefore, without TIMESTAMP, the
destination cannot detect the misbehavior and ends up validating path

289

12 OPT and DRKey

Algorithm 9 OPT header initialization and validation pseudocode.
1: function SOURCE INITIALIZATION

Require: Kσ
ASi

and Kσ
HS

, which ASi’s and HD share with HS, respectively after running
key setup. SESSIONIDσ chosen by HS.

2: DATAHASH Ð HpPq
3: SESSIONIDσ Ð SESSIONIDσ

4: PVF Ð PVF0 “MACKσ
HS
pDATAHASHq

5: l “ source-selected path length
6: for each intermediate ASi, where 1ď iă l do
7: PVFi = MACKσ

ASi
pPVFi´1q

8: OPVi ÐMACKσ
ASi
pPVFi´1 } DATAHASH } ASi´1 } TIMESTAMPq

9: end for
10: OPVD ÐMACKσ

HS
pPVFl´1 } DATAHASH } ASl´1 } TIMESTAMPq

11: TIMESTAMP Ð current time
12: end function

13: function VALIDATION AND UPDATE BY ASi
14: (Note PVF in OPT header = PVFi´1)
15: Compute OPV1i “MACKσ

ASi
pPVFi´1 } DATAHASH } ASi´1 } TIMESTAMPq

16: if OPV1i ““ OPVi and TIMESTAMP not expired then
17: PVF Ð PVFi “MACKσ

ASi
pPVFi´1q

18: Forward the packet to ASi`1
19: else
20: Drop the packet
21: end if
22: end function

23: function DESTINATION VALIDATION
24: (Note PVF in OPT header = PVFl´1)
25: l “ source-selected path length
26: Compute PVF1 “MACKσ

ASl´1
p. . .pMACKσ

AS1
pMACKσ

HS
pDATAHASHqqqq

27: Compute OPV1D “MACKσ
HS
pPVFl´1 } DATAHASH } ASl´1 } TIMESTAMPq

28: if (PVF1 ““ PVF) and (OPV1D ““ OPVD) then
29: Validation succeeds
30: Prepare packet using Equation 12.4 and forward to source
31: else
32: Drop the packet
33: end if
34: end function

tAS1,AS2, . . . , ASbad , AS1bad`1, . . . , ASmu for Pcrt . By setting the TIME-
STAMP field when the source sends out a packet, authenticator cloning
attacks are mitigated with loose time synchronization between the source
and ASes on the path.

290

12.5 Dynamically Recreatable Keys (DRKey)

The function VALIDATION AND UPDATE BY ASi and DESTINATION VALI-
DATION in Algorithm 9 describe the OPT procedure that an intermediate ASi
and the destination performs, respectively.

Distrusting Source and Destination

The previous protocols assume that the source and the destination are honest
and trust each other. We now relax this assumption and present an extension that
handles distrusting entities. In OPT, the source can generate all PVFs by itself
since it knows all Kσ

ASi
’s. Consequently, a malicious source can collude with an

intermediate AS (e.g., AS2) and forward the packet on a path HS Ñ AS2 Ñ HD
without going through AS1.

To prevent such an attack and address the problem of a distrusting source and
destination, we use the key setup protocol in Section 12.5 so that intermediate
ASes generate two separate shared keys for the source and the destination.
Unlike OPT, the Extended-OPT header requires two PVF fields: PVFHS , which
enables intermediate ASes and the destination to validate the source, and
PVFHD , which enables the destination to confirm the actual path, even if
the source is malicious and colludes with (at least) one intermediate AS. More
details are presented in our technical papers [132, 263] on OPT.

12.5 Dynamically Recreatable Keys (DRKey)

When SCION border routers need to authenticate data-plane packets, highly
efficient authentication mechanisms are needed to avoid opportunities for DoS
attacks. For efficient high-speed data-plane processing, only simple operations
can be performed, ruling out asymmetric cryptographic operations such as
per-packet digital signature generation or verification. A tight processing
budget only permits efficient symmetric cryptographic operations, such as the
computation or verification of MACs — but a challenge remains on how to
obtain the keys for the MAC computations.

Generating keys for all destinations would require much effort for the router,
and would require excessive state — both aspects could be exploited to mount
DoS attacks. For instance, Schuchard et al. show how exhausting router state
can be used to mount attacks to paralyze the Internet [219].

Our approach is to offload the key setup to the AS’s certificate server, and to
enable SCION border routers to efficiently derive keys on the fly. As a result,
SCION border routers can operate at high speed for data-plane operations,
while the complex control logic is outsourced to the AS’s services.

Efficient on-the-fly key establishment is useful in several SCION contexts.
For example, due to the efficient key establishment on intermediate routers,
SCION facilitates the first network control protocol (SCMP) that supports the

291

12 OPT and DRKey

authentication of network control messages (see Section 7.6 on Page 155 and
Section 4.2.5 on Page 82). The naı̈ve approach of adding digital signatures to
control messages could create a processing bottleneck at routers when many
SCMP messages are created in response to a link failure. Thus, efficient sym-
metric cryptographic keys are necessary and constitute an important building
block for the efficient and authentic propagation of network control messages.

A second example is SCION’s OPT protocol as described in this chapter.
OPT not only benefits from an efficient key setup, but also from a retroactive
setup: the retroactive nature of the key setup allows the key setup to happen on
a path P even after the first data packet has been sent along P. This enables
the detection of sophisticated attacks such as coward attacks [161], in which
malicious entities try to eschew detection.

The remainder of this chapter describes the Dynamically Recreatable Key
(DRKey) setup protocols, which enable routers to derive symmetric crypto-
graphic keys on the fly from a single local secret. More precisely, an AS uses
one local secret key (known only to SCION border routers and servers in that
AS) to derive a symmetric key for another AS or end host on the fly (without
keeping per-AS/end-host state) using an efficient pseudorandom function (PRF).
Hardware implementations of modern block ciphers enable faster key com-
putation than memory lookup from DRAM, and therefore such dynamic key
derivation based on a single secret can even result in a speedup over fetching
keys from main memory.

For the presented DRKey variants, we assume that each entity E has a
public/private key pair pPKE ,PK´E q, and that the public keys are correctly dis-
tributed to all other parties. We use the SCION control-plane PKI (Section 4.2)
to obtain authentic AS public-key certificates. Moreover, we assume that each
AS E has a local secret value SVE , which is renewed regularly. The current
implementation envisions a daily renewal.

12.5.1 DRKey Suite

Both OPT and SCMP require DRKeys to be shared between different entities.
To facilitate the exchange, SCION introduces the DRKey suite, which provides
a unified way of requesting and exchanging desired DRKeys. The certificate
servers in each AS form the backbone of the DRKey infrastructure.

The first-order DRKey KAÑB is the basis for the entire DRKey suite as higher-
order keys are derived from it. The key KAÑB is derivable by AS A and only
depends on the secret value SVA that is known only to infrastructure nodes in
AS A.

KAÑB “ PRFSVApBq

292

12.5 Dynamically Recreatable Keys (DRKey)

Since AS B also needs to know KAÑB, we will later describe a key exchange
protocol where a certificate server of AS B fetches the key from a certificate
server in AS A. Similarly, AS A will need to fetch the key KBÑA from AS
B. These first-order symmetric keys shared between A and B are then used to
derive higher-order DRKeys. Certificate servers in each AS are responsible
for all aspects of DRKey management, for instance also for distribution of
second-order keys to local hosts.

Since the secret values SVi change regularly (in the current version they are
valid for 24 hours), certificate servers periodically prefetch first-order keys
with all other ASes. With an increasing number of SCION ASes, an AS would
prefetch the most commonly used keys, and adopt a lazy key exchange approach
for infrequently used keys.

To fetch KAÑB, certificate server CSB in AS B starts the key exchange with a
certificate server CSA in AS A by sending the request

signature“ tA } val time } timestampuPK´B

CSB Ñ CSA : A,B,val time, timestamp,signature

where timestamp denotes the current time, and val time specifies a point in
time at which the requested key is valid. The requested key may not be valid
at the time of request, either because it is already expired or because it will
become valid in the future.

If the request has a recent timestamp, CSA replies with the encrypted DRKey,
where exp time denotes the actual expiration time of the key:

KAÑB “ PRFSVApBq
ciphertext “ tA,KAÑBuPKB

signature“ tciphertext } exp time } timestampuPK´A

CSA Ñ CSB : ciphertext,exp time, timestamp,signature

After CSB has received KAÑB, it is shared among all certificate servers in
B to ensure a consistent view of the shared keys. Each CS can now answer
requests by local end hosts in the AS.

To avoid explicit key revocation, the shared DRKeys are short-lived. Each
key has a validity period, which is based on the lifetime T of the secret value.
Certificate servers prefetch keys ahead of the expiration of the current key, to
allow for seamless transition to the next key. To avoid a key request storm, the
requesting certificate servers randomize their prefetch times.

Second-order DRKeys are derived from first-order DRKeys. End hosts can
request second-order DRKeys from their local certificate servers. A secure
channel between the end host and the certificate server is assumed, to ensure
authenticity and secrecy of the request and response messages. The deriva-
tion and availability of the second-order DRKeys is specific to the protocol.

293

12 OPT and DRKey

However, the certificate server provides a standard key request mechanism
for any protocol. A request has the form {type, requestID, protocol, source,
destination, additional (optional)}. Following are the requests corresponding
to the second-order DRKeys:

DRKey request

Kp
AÑB (0, requestID, p, A, B,)

Kp
AÑB:HB

(1, requestID, p, A, HB,)
Kp

A:HAÑB:HB
(2, requestID, p, HA, HB,)

Kp
AÑB:HB,C:HC

(3, requestID, p, A, HB, HC)

The exchange is initiated by the end host HA in AS A. It creates a request
according to the desired key and sends it to a local certificate server CSA

HA Ñ CSA : request,val time, timestamp

where val time denotes a point in time at which the requested key is valid.
Similarly as above, the requested key may not be valid at the time of request,
either because it is already expired or because it will become valid in the future.
The timestamp is used to prevent message replay attacks.

CSA verifies that the request is valid and not expired. Additionally, it checks
that HA is authorized to request the key. This is only the case if either sender
or destination is equal to A : HA. On success, CSA computes the requested key
K for protocol p and responds with the requested key K and its associated
expiration time:

CSA Ñ HA : requestID,K,exp time, timestamp

12.5.2 DRKey Derivation Protocol for OPT

OPT requires that for source HS in AS S and destination HD in AS D: (a) each
ASi on the path shares symmetric key Kσ

ASi
with both HS and HD, and (b) HS and

HD directly share symmetric key Kσ
HSHD

. To accomplish this, the DRKey suite is
used. The key setup is done independently for each direction of communication
and comes with the retroactivity property: HS and HD can request keys shared
with the intermediate ASes to enable subsequent path validation even after
communication has begun.

The DRKeys used in OPT can be computed by certificate servers in AS S. To
minimize the number of requests, the source HS first creates a path descriptor
PATHHSÑHD “ xHS,AS1,AS2, . . . ,HDy for the source-selected path from HS to
HD. The source HS sends an OPT DRKey request to its local certificate server

294

12.5 Dynamically Recreatable Keys (DRKey)

CSS, where val time and timestamp are as before:

HS Ñ CSS : SESSIONIDσ ,PATHHSÑHD ,val time, timestamp

The request is handled by the local certificate server CSS by first checking
the timestamp and the value of HS in PATHHSÑHD . On success, CSS derives
and returns all keys, along with their expiration time (the expiration times of all
ASes are aligned):

Kopt
S:HSÑD:HD

“ PRFKSÑDp“OPT” } HS } HDq
Kopt

ASi ÑS:HS,D:HD
“ PRFKASiÑSp“OPT” } HS } HDq

Kσ
HSHD

“ PRFKopt
S:HSÑD:HD

pSESSIONIDσ q (12.5)

Kσ
ASi
“ PRFKopt

ASi ÑS:HS ,D:HD
pSESSIONIDσ q (12.6)

CSS Ñ HS : Kσ
HSHD

,Kσ
AS1

,Kσ
AS2

, . . . ,exp time, timestamp

After HS has received the list of DRKeys, the key exchange with destination
HD can be initiated. The list is encrypted and authenticated using Kσ

HSHD
. Note

that this key can be fetched by HD from its local certificate server CSD without
interaction with AS S.

ciphertext “ tKσ
AS1

,Kσ
AS2

, . . .uKσ
HSHD

mac“ MACKσ
HSHD

pSESSIONIDσ } ciphertext } timestampq
HS Ñ HD : SESSIONIDσ ,ciphertext, timestamp,mac

Both HS and HD are now in possession of all DRKeys in the direction from
HS to HD. The key setup for the other direction works analogously.

Running this key setup before starting the communication between HS and
HD will result in increased latency. However, the setup can be run retroactively,
such that the keys are deterministically chosen and can be requested even
after the communication has started. As described in Section 12.4.2, there is
a retroactive instantiation of PathTrace, which will directly benefit from this
property.

Attentive readers might notice that the presented key setup differs from the
OPT paper [132]. There are multiple advantages over the original design:
Introducing two tiers of keys allows derivation of all DRKeys by the local
certificate server. This reduces latency and stress on certificate servers in core
ASes.

A protocol supporting a distrusting source and destination can be imple-
mented similarly. More details on this point can be found in the original OPT
paper [132].

295

12 OPT and DRKey

12.5.3 DRKey Derivation Protocol for SCMP

Authenticating network control messages is an important component of a secure
Internet architecture. To prevent DoS attacks on SCION infrastructure devices,
the generation of authenticated SCMP messages needs to be efficient. Using
DRKey, SCION infrastructure devices can use efficient symmetric cryptography
without the need for key lookups. End hosts benefit from the added security of
authenticated SCMP messages, but have to perform an inexpensive key lookup
on the local certificate server in case the validation key is not locally cached.

SCMP messages can be sent either by infrastructure nodes or by end hosts. To
prevent attacks, infrastructure nodes use a DRKey, which can be derived using
only the local secret value. This entails different types of SCMP authentication
keys, depending on the creating and verifying entity.

SCMP messages created by an AS S addressed to another AS D are authen-
ticated using the DRKey Kscmp

SÑD. It is only dependent on KSÑD, which can be
dynamically computed by S:

Kscmp
SÑD “ PRFKSÑDp“SCMP”q

SCMP messages created by an AS S addressed to host HD in AS D are
authenticated using the DRKey Kscmp

SÑD:HD
. This also is only dependent on KSÑD

and can be dynamically computed by S. To verify, end host HD has to request
the key from its local certificate server as described in Section 12.5.1, if it is
not present. Additionally, HD sending an SCMP message to S will use the same
key as well. This allows for fast verification on the AS side.

Kscmp
SÑD:HD

“ PRFKSÑDp“SCMP” } HDq
SCMP messages created by end host HS in AS S designated for end host HD

in AS D are authenticated using the following key:

Kscmp
S:HSÑD:HD

“ PRFKSÑDp“SCMP” } HS } HDq
Both HS and HD have to request this key from a local certificate server.

The induced overhead is compensated by the security gain that is achieved by
authenticating SCMP messages.

As we envision local networks using network address translation (see Sec-
tion 10.8.2), the addresses used in SCMP packets may be modified by NAT
devices, causing authentication failures. To address this issue, a NAT device
has to re-authenticate an SCMP packet by replacing the original authentication
information with new information created with a new key.3 To enable this,
certificate servers are configured to return keys for local IP ranges [210] with
loosened access control rules. The exact details need to be worked out, if NAT
turns out to find adoption in SCION.

3If the SCMP message contains the address and layer-4 headers, the NAT device has to rewrite
them as well.

296

12.5 Dynamically Recreatable Keys (DRKey)

12.5.4 Optimizations

As border routers need to be able to create SCMP messages at line rate, the
DRKey derivation has to be efficient. Thus, a hardware implementation of
AES can be used for the pseudorandom function. However, the input to derive
Kscmp

SÑD:HD
does not fit into one AES block if HD has an IPv6 address. To address

this issue, we introduce a separate secret value SV scmp
S into the DRKey suite,

which is used to derive Kscmp
SÑD directly. Kscmp

SÑD is turned into a first-order key and
is shared alongside the original first-order key KSÑD between certificate servers.
Furthermore, the second-order key is redefined as follows:

Kscmp
SÑD:HD

“ PRFKscmp
SÑD
pHDq

Consequently, the input to derive Kscmp
SÑD:HD

does now fit into one AES block
even if HD has an IPv6 address. Thus only one AES block operation instead of
two is needed for this derivation step.

297

Part IV

Analysis and Evaluation

0

0.5

1

1.5

2

2.5

3

3.5

Abilene Geant Telstra Sprint NTT Verio Level3 AT&T

SCION w/o Cache IP w/ Edge Cache
NDN NEBULA w/ Edge Caching
SCION w/ Edge Caching

299

13 Security Analysis

DAVID BARRERA, TOBIAS KLENZE, ADRIAN PERRIG,
RAPHAEL M. REISCHUK, BENJAMIN ROTHENBERGER,
PAWEL SZALACHOWSKI

Evaluating the security of a network architecture, including its routing protocols
and supporting infrastructure, is an ambitious undertaking. Indeed, the security
guarantees afforded by the architecture, as well as the security of the architecture
itself, depend on a number of factors. For example, should we assume correct
implementation and configuration of the protocol at all deploying nodes? Do
we consider an adversary that can eavesdrop on a large portion of network
links? Can malware on end hosts send arbitrary traffic?

Even considering the multitude of factors, the vulnerability of one service or
component in the architecture may impact the security of another. It is therefore
important not only to analyze all major components independently, but also to
analyze their interactions.

This chapter aims to shed light on the overall security of SCION. We explain
how the architecture defends against existing network attacks (e.g., DDoS
or source address spoofing), and how its design is resilient to new attacks
that become possible in the SCION architecture. The comparison with today’s
Internet is slightly unbalanced as many of today’s flaws and attacks (for instance
with BGP and DNS) are not possible in SCION and will thus not be discussed
in this chapter. The attacks that we will discuss, however, are mostly not
possible in today’s Internet. This mismatch could create the illusion that
SCION enables more attacks than the current Internet. However, for each
SCION attack we mention, we also provide either an argument why the attack
is not possible, or we show how the attack can be countered. In the current
Internet, countermeasures for many of the ongoing attacks are either less likely
to be deployed or lead to further problems themselves. In the end, SCION
offers dramatically improved security compared to today’s Internet.

In this chapter, we analyze the security of the control and data planes, as
well as the security of supporting infrastructure elements. The analysis does
not cover the extensions SIBRA, RAINS, OPT, or DRKey, nor the PKIs or
ISD coordination. The security of these systems is discussed in their respective
papers. As a methodology, we assume an attacker’s point of view and emulate

301

13 Security Analysis

a real-world adversary to analyze the design specification and source code of
SCION. For each attack, we describe the adversary’s goal and how SCION can
defend against the attack. We also discuss several doomsday scenarios where
private keys for critical services are leaked, or powerful state-level adversaries
attempt to monitor, or even disable, global and local communication.

While simplicity was one of the design goals of SCION, protocol design is
an error-prone process and an informal analysis alone cannot provide the same
assurance as formal proofs. We thus aim to formally verify security properties
at the protocol level. Some components of SCION have already been verified,
such as ARPKI and OPT. We refer interested readers to the research papers
[23, 24, 132], as reproducing the results here would go beyond the scope of
this book. The verification of the core protocol (beaconing and data-plane
forwarding) is still underway and does not feature in this book. Similarly, we
are currently in the process of verifying the implementation, so we only briefly
report on our approach in Section 13.3.

Besides our own analysis, we refer the reader to evaluations of SCION by
third and independent parties. Ding et al. [70] have evaluated five popular future
Internet architectures (FIAs) with a particular focus on the security properties
provided. After comparing the five FIAs, the authors conclude that SCION
offers more security properties than the other four (see Section VII and Table 2
of the study [70]).

Chapter Contents

13.1 Security Goals . 302

13.2 Threat Model . 304

13.3 Software Security . 305

13.4 Control-Plane Path Manipulation 307

13.5 Data-Plane Path Manipulation 312

13.6 Censorship and Surveillance . 318

13.7 Attacks Against Availability . 320

13.8 Absence of Kill Switches . 325

13.9 Resilience to Path Hijacking . 327

13.10 Summary . 330

13.1 Security Goals

There are two groups of actors in SCION, and they have their own security
goals. The first are autonomous systems (ASes), which have routing policies

302

13.1 Security Goals

based on business contracts and technological constraints. The second are end
hosts, either machines offering certain services (e.g., web servers) or clients
making use of those services. In this section, we briefly describe the security
properties that SCION should provide for both groups.

13.1.1 Overall Security Goals

Besides the particular concerns of actors, some security goals apply to the entire
architecture. These are resilience to failures, availability, and support for a
heterogeneous but global trust environment.

Availability is one of the most important security goals in today’s Internet,
and is of concern to both ASes and end hosts in SCION. We show how SCION
achieves a high level of availability, and provides tools to protect against denial-
of-service attacks.

Today’s heterogeneous trust environment is reflected in SCION through the
concepts of isolation and transparency. Routing within an ISD is independent
of other ISDs. Nevertheless, global connectivity is achieved for packets that
need to traverse ISD bounds.

13.1.2 Autonomous Systems

The overarching goal of ASes is to reliably and effectively achieve network
connectivity to other entities connected to the Internet, and in case of ISPs,
provide connectivity to their customers. In the control plane, an AS wants
to verify routing information it receives and ensure that routing information
it propagates cannot be altered by malicious entities. In the data plane, an
honest AS will forward packets only along locally valid segments. We define a
segment as locally valid if the hop fields used for forwarding in the AS (the hop
field leading to its provider, plus additional hop fields in the case of peering or
change of segment) correspond to a PCB in the control plane.

13.1.3 End Hosts

The security goals of end hosts are diverse and manifold. Many of them should
be addressed on different levels of the network stack. We only discuss the
properties that are important at the network layer. End hosts have the following
control-plane security goals:

• Reachability: The common case is for hosts to be reachable by any other
host on the Internet and be able to reach other hosts.

• Path diversity: As disjoint paths improve availability, there should be a
diverse set of paths available to choose from.

The following security goals concern the data plane:

303

13 Security Analysis

• Truthful forwarding: The path selected by the source is the path tra-
versed during packet forwarding.

• Path transparency: End hosts should know or be able to infer the path
that the packet takes.

• Packet integrity: Receiving hosts should be able to verify that a packet,
including its path, is the same as the one sent by the source.

• Source authentication: The receiving host should be able to authenticate
the origin of a packet.

• Weak and strong detectability: An on-path attacker, as an intermediate
node, cannot effectively disguise his own presence on the path, even
when changing the path information in the packet’s header. This property
is strong when the destination is able to tell whether a disguise took place.
Localization of the attacker is not required under this definition.

We note that packet integrity, source authentication, truthful forwarding, and
strong detectability are only provided when using the OPT extension described
in Chapter 12.

13.2 Threat Model

In the context of the control and data planes, we consider the following threat
model. We assume that there exist hostile participants at arbitrary locations
within the network. The adversary can not only passively eavesdrop on mes-
sages, but also actively tamper with the communication, i.e., drop, delay, or alter
packets that it should forward, or inject packets into the network. For almost all
attacks we will look at the network topology on an AS level, and assume that
the adversary has compromised entire ASes (as opposed to just certain routers
within an AS). All hostile nodes (ASes) are assumed to share a channel for
information exchange outside of the current network. When discussing crypto-
graphic primitives, we assume that the adversary is computationally bounded
and has no efficient way of breaking cryptographic primitives.

Regarding SCION-specific capabilities, we assume the adversary is able to
register as an AS with the ISD core and perform regular operations. However,
we expect registration operations in the core to be throttled and visible to other
nodes within the ISD. In particular, we assume a mechanism that prevents large
numbers of malicious ASes from joining the ISD rapidly or automatically. For
increased security, we expect that for each new AS registration, the necessary
amount of due diligence and verification is performed by core ASes, as we
explain in Section 4.2.3.

When an AS acts maliciously, we assume that the adversary can eavesdrop
on all control and data messages traversing the AS. By compromising an
AS, the adversary learns all cryptographic keys and settings. He can also
control how the AS behaves including redirection of traffic, fabrication, replay,

304

13.3 Software Security

and modification of packets. Data signed by the AS will be valid until the
corresponding certificates for that AS expire or are revoked.

Assuming the above-mentioned capabilities, the goal of the adversary is to
prevent communication availability of other ASes, or eavesdrop on traffic that
is not traversing a malicious AS.

13.3 Software Security

A critical aspect of security in a system is software security. Exploiting software
defects allows a malicious entity to take over entire systems. Recently, the
“Vault 7” revelations by WikiLeaks disclosed that over 300 types of Cisco
switches are vulnerable to remote code execution [55], and MikroTik’s routers
can be exploited to gain root privileges [251]. Another example is Juniper
Networks discovering unauthorized backdoors in its firewalls such that an
external adversary could decrypt traffic encrypted by the firewall [48, 246, 261,
262]. These examples show that beside programming errors, rogue software
developers must also be considered.

In this section, we discuss software verification and analysis as a tool to
detect vulnerabilities in the SCION codebase. Further, we outline how code
correctness is ensured in the SCION implementation.

Threat Model

For software security, we consider a more specific threat model and assume the
following adversary capabilities. Since the attacker has full access to the public
source code, he can therefore identify possible flaws in the implementation.
He can run his own SCION nodes and infrastructure services (e.g., a beacon
server), incorporate entire ASes and participate in the SCION network. The
adversary is also aware of other publicly available exploits to compromise end
hosts. By exploiting an end host, the adversary gets full control over that host
and learns all private keys stored on the host.

Verification Techniques

We use static and dynamic analysis to find implementation flaws and errors that
have not been detected by our unit and integration tests. Such code analysis
tools are designed to analyze source code or compiled versions of code in order
to find security flaws. The tools contribute to a secure codebase by identifying
security-relevant portions of code, but are not enough to claim that code is
secure. The SCION codebase has been analyzed using state-of-the-art analysis
software. All detected issues have been fixed. Dynamic testing is an automated
technique based on invalid, unexpected, or random input data, which we use

305

13 Security Analysis

to reveal unexpected behavior such as failing assertions, crashes, or memory
leaks. We employ a mutation-based approach by altering existing data samples
to create test data. We will continue to adjust our test suite as the codebase
matures.

Apart from software analysis, we are working on formal verification tech-
niques to ensure the correctness of SCION components. We have started with
the verification of the SCION border router code and will expand our techniques
to other components such as certificate, beacon, and path servers.

Strengths of SCION Regarding Software Security

Regarding software security and correctness, SCION offers several advantages
compared to the current Internet. We discuss two specific advantages.

First, the design of SCION is publicly available and described in detail in
this book and in various scientific papers [20, 22, 49, 266]. Moreover, the imple-
mentation of SCION is also freely available under the Apache License Version
2.0 [89]. Interested researchers, developers, network operators, governments,
non-profit organizations, and other stakeholders can thus inspect SCION’s spec-
ification and source code in detail to convince themselves of its correctness
and backdoor-freeness. This is a tremendous benefit in comparison to today’s
Internet, as, in particular, the semantics of commercial routers is opaque in
its details, and correct behavior cannot easily be verified. By allowing a wide
public to see and test the code, we hope to publicly expose any flaws and
potential backdoors.

The second benefit stems from SCION’s simple data plane, leaving complex
operations to the control plane. For a high-speed network architecture, an
efficient data plane is critical — consequently, a simple data plane is beneficial
to facilitate construction of efficient code. In fact, SCION’s border router
implementation in the Go programming language is about 10,000 lines of code.
By comparison, modern network operating systems, such as CISCO’s IOS or
Juniper’s JUNOS, are believed to have millions of lines of code [53, 73] as they
implement numerous different protocols as well as control-plane operations.
The SCION control plane is implemented as services. Since their operation is
not as performance-critical as the data plane, the services can be implemented in
higher-level languages that facilitate simple development. The current version
of SCION utilizes Python as the programming language for the services, but
more performance-critical services, such as the path servers, are planned to be
implemented in the Go programming language.

306

13.4 Control-Plane Path Manipulation

13.4 Control-Plane Path Manipulation

Path manipulation attacks try to alter the path chosen by a sender. The goal
of the adversary is to attract traffic towards himself, towards another target, or
to manipulate the paths available to and chosen by hosts in some other way
(possibly without the sender or receiver noticing). For instance, he may want
to attract downstream traffic for financial gain (since as a provider, he will
be compensated based on traffic volume) or to perform man-in-the-middle
attacks on transit traffic. On the control plane, he can attempt to attract traffic
by selectively disseminating PCBs or by forging new PCBs. As shown in the
following examples, path manipulation attacks either have limited impact or
require efficiently breaking the cryptographic primitives used in SCION.

In today’s Internet, researchers and network operators are noticing that the
Border Gateway Protocol (BGP) has numerous shortcomings [25, 117, 216,
219] and especially lacks integrity protection for routing update messages.
Maliciously acting routers can advertise IP prefixes from address spaces that are
unused or that belong to other ASes, and effectively redirect traffic to hosts under
the control of the attacker. To address these problems, specific improvements
(such as BGPsec) have been proposed [3, 44, 100, 116, 157, 158, 248], although
none of these improved protocols have seen widespread deployment.

SCION control-plane messages, unlike those of BGP, are authenticated and
integrity protected, paving the way for solving issues such as path hijacking.
Moreover, SCION’s routing plane converges instantaneously, in stark contrast
to BGP whose iterative refinement of routes can result in slow convergence. As
such, recovery and path discovery times are shorter and more predictable in
SCION.

In the following, we examine several approaches to manipulating paths in the
SCION control plane, and show for each case how SCION’s design prevents
the corresponding attack, or helps to mitigate it.

13.4.1 Path Hijacking Through Interposition

To become on-path, an adversary might try to manipulate the path creation
or beaconing process. More precisely, as illustrated in Figure 13.1, provider
AS A sends two beacons to customer ASes B and M. A malicious AS M who
can eavesdrop on links between AS A and AS B could try to intercept and
disseminate the “better” beacon meant for B by injecting its own hop fields into
the PCB toward downstream ASes. This could offer B an attractive up-path
traversing M to the core.

Similarly, assuming that the attacker has control over the path between A and
B, he can block downstream PCBs from A such that the malicious AS M can
position itself as the only upstream path to the core for B.

307

13 Security Analysis

B

M

A

PCB

PCB

PCB

PCB

Figure 13.1: Interposition attack.

The attack is detectable by downstream ASes, because the PCBs disseminated
by A towards B contain B as an egress AS identifier. Therefore, verification of
inbound PCBs will fail, because the adversary’s PCBs are not signed with the
expected key.

Assuming that an adversary wants to interpose an AS by modifying an already
existing path, he would need to modify the corresponding hop fields. As hop
fields are integrity protected and include the previous hop field in the MAC
calculation, malicious modifications of hop fields are prevented. However, if
the adversary can block the traffic between A and B, then indeed he can force
traffic redirection through M. This attack is fundamental and generally cannot
be prevented.

13.4.2 Creation of Spurious ASes

An adversary could try to spoof other ASes by introducing nonexistent entities.
If he succeeds and traffic is sent upstream with the spoofed entity as a source,
the traffic will appear to originate downstream from beyond the malicious AS.
This allows the adversary to plausibly deny the misbehavior and complicate
detection of this attack.

However, this attack is difficult to execute, because spoofing a new AS
requires a registration of that AS with the ISD core. However, if a malicious AS
M obtains a valid certificate, we cannot prevent it from announcing malicious
paths traversing M. Therefore, each AS needs to be checked thoroughly during
the registration process. In case the malicious AS M does not obtain a valid
certificate, the adversary cannot craft valid PCBs and HFs.

Similarly to creating a fake AS, if an adversary wanted to introduce a new
ISD (possibly spoofed), it would need to generate its own TRC, and all cross-
verifying ISDs would need to verify its legitimacy (see Chapter 5).

308

13.4 Control-Plane Path Manipulation

13.4.3 Peering Link Misuse

Downstream beacons may be recorded by on-path attackers (e.g., eavesdrop
on a link between ASes). By re-injecting that beacon into another link, the
adversary can extend paths as long as the beacon is correctly forwarded.

B
C

A

PCB

peering link

PCB

PCB

Figure 13.2: Beacon theft. AS A wants to selectively share access to the peering
link with B, but not with AS C. An eavesdropping adversary reads
the beacon intended for AS B and re-injects it at his own AS C to
gain access to the peering link.

Consider the example in Figure 13.2. AS A wants to share its peering link only
with one of its downstream neighbors, B, and therefore decides to selectively
announce the peering link in PCBs sent to B. The monitoring adversary misuses
this beacon to gain access to the peering link by prepending it to his own
path. Apart from eavesdropping on the link, the adversary is able to obtain
the necessary hop fields by querying a path server and extracting them from
registered paths.

SCION successfully mitigates this attack by including specific “next hop”
information in the PCB before disseminating it further downstream (see Equa-
tion 7.6). Furthermore, each hop field contains an egress interface. If a malicious
entity tries to misuse a stolen PCB by adding it to its own segments, verification
will fail upstream as the egress interface mismatches. Therefore, the peering
link can only be used by the intended AS.

13.4.4 Manipulation of the Path Selection Process

Path selection is one of the main benefits of SCION compared to the current
Internet, where hosts have no control over the forwarding paths that their
packets traverse. With the benefits of freedom regarding path selection, however,
comes the risk for hosts to choose non-optimal paths. In this section, we
demonstrate how an attacker can trick hosts downstream into choosing non-
optimal paths. We argue that, compared to the current Internet, the path selection
in SCION offers higher security overall since (a) path transparency enables a

309

13 Security Analysis

path-selecting end host to identify the potentially malicious ASes on the path,
and (b) path control enables the host to avoid such malicious ASes, even if the
cost of such attacker-free paths appears higher.

In SCION, path selection is used in three cases. First, a beacon server selects
which PCB to announce downstream. Second, the beacon server chooses which
paths it wants to register at the local and core path servers. Third, the end host
performs path selection from all available path segments. We now describe path
selection attacks (or path preference attacks), which aim at influencing the path
selection process in SCION. The goal of such attacks is to make paths that are
controlled by the attacker more attractive than other available paths. A simple
example is a low or even negative price in a pricing system, or announcing high
bandwidth and low latency for a path.

The following attacks are only successful if the attacker is located within
the same ISD and upstream relative to the victim AS. It is not possible to
attract traffic away from the core as traffic travels upstream towards the core.
Furthermore, the attack may be discovered downstream (e.g., by seeing large
numbers of paths become available), but also during path registrations. After
detection, paths traversing the adversary AS can be identified and avoided by
regular ASes.

Fake Up-Link Announcement

In a fake up-link announcement attack, the attacker receives PCBs from its
upstream provider and announces the PCBs downstream (see Figure 13.3). If
such an adversary-announced path complies with the policy of the downstream
ASes, the corresponding fake PCBs may be added as one of the k paths available
to the end host. At this point, the end host may select such a fake link for
communication.

The attacker controls a set of consecutive ASes and can also advertise fake
links as possible upstream links to downstream entities. The advertised paths
may selectively be crafted with good properties such as high bandwidth, long
lifetime, low price, or any other desirable path property. This increases the
chance for such a bogus path to be selected by the communicating parties. In
Figure 13.3, an attacker floods mˆn path segments, which become available to
D, and possibly to the victim.

While such bogus paths can have some desirable properties, they will need to
traverse at least three malicious ASes. As there might exist other shorter paths,
this decreases their chance of being chosen by a downstream server for PCB
dissemination or by a host for construction of a forwarding path. Furthermore,
without creating fake ASes, there would be no AS-level diversity.

310

13.4 Control-Plane Path Manipulation

A M
1

M
2

M
3

B

C

D

Z

V

core

victim

n links

m links

Figure 13.3: Fake up-link announcement. Malicious ASes Mi advertise mˆn
path segments to increase the chance of selection by victim V .

Wormhole Attack

A malicious node M1 can send a PCB not only to his customers, but also out
of band to another, colluding malicious node M2. This creates new segments
to M2 and his customers, which may not correspond to actual paths in the
network topology. Similarly, a fake path can be announced through a fake
peering link and attract traffic even across ISDs. Without specific prevention
mechanisms, such a wormhole attack is unavoidable in routing [115]. To
detect wormhole attacks, latency measurements with per-link timestamps are
one potential approach. Each ISP would announce the latency of links in the
PCB. In combination with a timestamping extension, this would help reveal the
wormhole.

Fake Peering Link Announcement

As an instance of a wormhole attack, an adversary advertises fake peering links,
thus offering short routes to many different destination ASes within and outside
its own ISD. Downstream ASes will likely have a policy of preferring paths
with many peering links and thus are more likely to disseminate PCBs from the
adversary. Similarly, hosts are more likely to choose short routes that make use
of peering links. However a peering link can only be used if the neighboring AS
also announces it. If the attacker is colluding with an external AS, a wormhole
becomes possible. On the data plane, whenever a packet containing a fake
peering link is received by the adversary, he can transparently exchange the
fake peering link hop fields with valid hop fields to the colluding AS (see
Section 13.5). To avoid detection of the path alteration by the receiver, the

311

13 Security Analysis

colluding AS can replace the added hop fields with the fake peering link hop
fields the sender inserted.

To defend against this attack, methods to detect the wormhole attack are
needed [115]. As discussed above, link latency measurements can help reveal
the wormhole and render the fake peering link suspicious or unattractive.

13.5 Data-Plane Path Manipulation

Besides manipulating the routing decisions on the control plane, adversaries can
also attempt to influence forwarding in the data plane. Because the forwarding
path selection has already been made in the control plane, an off-path attacker
is limited in his abilities. The adversary can merely attempt to disrupt the
connectivity of the chosen path and force the host to select a new path. We
discuss availability attacks in Section 13.7 and concentrate on the case of an
on-path attacker in this section.

To differentiate these attacks from path manipulation attacks in the control
plane, we assume a static control plane. This means that path servers have
a constant set of paths available, and attackers are restricted to engaging in
attacks by receiving, manipulating, and sending data traffic as opposed to
sending control messages. Adversaries may try to attract or divert traffic from
certain points in the network, craft new hop fields and segments, or combine
existing ones in order to create new paths to influence the way outgoing data
packets are forwarded, to manipulate the routing history of the packet, and to
cover up their own actions.

While some of these attacks seem to be quite severe, they are under the strong
assumption of an on-path attacker. This is in contrast to most attacks considered
in protocols such as BGP, where attackers are less restricted. In addition, we
will show that the attacks presented here are, if not entirely preventable, at
least detectable, especially when using particular SCION extensions for path
integrity protection.

We briefly review the SCION extensions that are relevant for this section.
Using the end-to-end SCION packet security extension (see Section 15.1.4),
the sender protects the header of a SCION packet with either a MAC or a
signature, which can be checked by the receiver. All fields of the header are
protected, except for the CurrHF and CurrINF pointers, which are changed by
routers. Thus, the destination can detect tampering with the sender’s intended
path. Origin and Path Trace (OPT; see Chapter 12) on the other hand provides
guarantees for the path that the packet actually took. Each intermediate router
adds cryptographically secured information that malicious routers cannot pro-
duce, thus making attacks detectable. It should be noted that neither of these
extensions are used by default for data packets.

312

13.5 Data-Plane Path Manipulation

13.5.1 Source Address Spoofing

A recent study has shown that more than 40% of all global ASes allow some
level of IP address spoofing [33]. These ASes do not perform appropriate
levels of ingress filtering, which means that they forward outbound traffic that
claims to have originated in another network or AS. In today’s Internet, source
address spoofing is often used to hide the true origin of a packet. As shown in
Figure 13.4, spoofing the origin of a packet allows an adversary, say 1.1.1.1,
to redirect (or even amplify) traffic to the victim 3.3.3.3 by first sending a
request to an arbitrary host (or vulnerable service), say 2.2.2.2, whose answer
is then sent to the alleged originator of the request 3.3.3.3 (instead of to the
true originator 1.1.1.1).

adversary victim

host

Internet

IP address:

1.1.1.1

IP address:

2.2.2.2

IP address:

3.3.3.3

src: 3.3.3.3

dst: 2.2.2.2
src: 2.2.2.2

dst: 3.3.3.3

Figure 13.4: Source address spoofing in today’s Internet. A malicious entity
spoofs the source address of the packet, which will be reflected
towards the victim by an arbitrary host, or even amplified by a
vulnerable service.

The address fields in a SCION packet header can be arbitrarily picked by
an adversary as they are not integrity protected. However, as SCION does not
forward the packet based on the destination address until the packet reaches the
destination AS, the effect of address spoofing is limited. Since SCION packet
forwarding follows the hop fields, a packet needs a correct sequence of hop
fields to be delivered to the destination.

In the simplest source address spoofing attack in SCION, the adversary
simply embeds the source address of a different host v that is located in the
same AS. The adversary embeds the hop fields required to reach the destination
host h and sends off the packet. Since in SCION the receiver reverses the path
for the response packet, v will receive the response.

In a more complicated case, the adversary wants the victim (who happens
to be in a different AS) to obtain the response packet. Because of the way

313

13 Security Analysis

SCION forwarding operates, the victim host will need to be located in an AS
on the path traversed by the hop fields, either before or after the adversary’s
AS. If the adversary is located in AS A, the victim in AS V , and the host h
in AS H, then the adversary can select a path V ´A´H (potentially with
additional intermediate ASes), set the current hop field pointer to the hop field
corresponding to AS A, and send the packet to the local egress border router
which will forward the packet on the path toward AS H. When h inverts the
path, the response will be delivered to v. This attack works if the adversary is
located in an AS on the up-segment of AS V , in an AS on a core-segment, or in
an AS on the down-segment of AS H.

Since SCION border routers check whether the destination ISD and AS
numbers match their own ISD and AS numbers to determine if the packet
should be locally delivered, an adversary can also create a path A´V ´H to
mount this attack. The response packet will be delivered to v if the hop field
corresponding to AS V does not have the forward-only flag set. Furthermore,
to hide its traces and frame an innocent AS F , the adversary can use a path of
the form F´A´V ´H.

The fact that the adversary has to be located in an AS encoded by the hop
fields in the packet facilitates adversary localization. Moreover, the SCION
packet security extension and the OPT extension can prevent these attacks.
The SCION packet security extension in conjunction with the DRKey system
described in Section 12.5 enables that even the first packet sent to a destination
provides source authentication. The OPT extension enables the destination to
verify that all the claimed ASes on the path were indeed traversed, preventing the
attacks where the adversary’s initial packet only partially traverses the path. In
case a malicious AS creates many fake hosts to overwhelm a destination server,
source authentication enables the server to perform per-AS load balancing.

In a special case where the destination needs to perform a path lookup to
return a packet (e.g., if a path has just expired or if a uni-directional path was
used), the destination can insist on source authentication to prevent reflection
attacks as described in the beginning of this section.

Armed with these countermeasures, we conclude that source address spoofing
is not effective in SCION.

13.5.2 Modification of Packet Metadata

Packet metadata (such as the header and its path) is only partially integrity pro-
tected and thus vulnerable to unauthorized modifications. These modifications
might have unwanted consequences in packet forwarding.

As part of the packet header, the SCION common header (see Figure 15.2
on Page 343) contains pointers to the current info field and to the current hop
field. These pointers are updated as the packet traverses the network. If an
unauthorized entity changes these pointers, there is a high probability that HF

314

13.5 Data-Plane Path Manipulation

verification will fail. An adversary can also extend the packet with arbitrary
content, set the packet length accordingly, and adjust the pointers to a location
of his choice. This leads to a path extension attack, where an adversary adds
arbitrary hop fields of his choice, modifies the pointer, and sends the packet
further downstream. Similarly, modification of the destination type will make
the border router in the victim’s AS incapable of delivering the packet to the
correct end host.

The packet metadata is protected by the SCION packet security extension and
by OPT, so the use of either is sufficient to defend against metadata manipulation
attacks.

Info-Field Manipulation

The metadata for each path segment is stored in the info field inside the path in
the SCION header (see Figure 15.5 on Page 347). They include a timestamp,
which is set by the initiator of the PCB. This timestamp cannot be modified by
an attacker as it is included in the calculation of the MAC for each hop field.
Otherwise, the timestamp could be backdated (and make a path appear invalid)
or set to a later date (and extend the validity of the path).

Hop-Field Manipulation

Hop fields are protected with MACs and if the corresponding key is unknown,
the attacker can at best attempt to perform a brute-force attack to determine
the key. Candidate keys can be validated by checking the MAC contained in
sample hop fields. As SCION uses 128-bit keys by default, such an off-line
attack is computationally infeasible in practice. Furthermore, the keys for the
MAC computation are short-lived, with a validity period of 24 hours.

MAC schemes are not generally specified by SCION and may thus be indi-
vidually chosen by each AS. A hop field’s MAC is only checked by the AS that
created it, which enables algorithm agility for the MAC scheme. If a certain
MAC algorithm is discovered to be weak or insecure, ASes can quickly switch
to a secure algorithm without the need for coordination with other ASes.

The adversary might also try to directly brute-force a MAC (instead of the
MAC’s key). However, one packet would need to be sent to verify each guess.
For our `-bit MAC, the adversary is expected to generate 2` packets to forge
one correct MAC. For the relatively short 3-byte MACs currently used, the
attacker would need to try « 17 million different MACs to successfully forge
the MAC of one hop field. For each incorrect hop field, the corresponding AS
returns an SCMP packet. Even though an attacker can observe whether a hop
field has been accepted, each incorrect guess is visible to a monitoring entity
and thus the attack can be easily detected.

315

13 Security Analysis

13.5.3 Path Truncation and Extension

In the beaconing process, each AS extends the encoded SCION path with its
own information and authenticates it before forwarding the beacon. The MAC
used for authentication also takes the information of the previous hop field into
account (see Equation 7.8). Therefore, it seems possible to shorten a path by
removing hop fields from the end of the path. As long as the previous hop field
is included (if it exists), verification in the current AS will succeed. Similarly,
an adversary could try to extend an existing valid path by using its own hop
fields.

Both these attacks are not possible in SCION since source and destination hop
fields contain an empty ingress or egress interface identifier (see Equation 7.12),
and delivery of packets using a hop field marked with the forward flag is
prohibited. Hence a router can detect that a packet terminates at its AS.

13.5.4 Path Splicing

In a path-splicing attack, an adversary takes valid path segments of different
paths and splices them together to obtain a new valid path.

A B

C

D

INF

...
...

HF
A

HF
C

HF
D

INF

...

p1 p2

MAC

MAC

MAC ...

HF
B

HF
C

HF
D

MAC

MAC

MAC

Figure 13.5: Path-splicing attack. A malicious AS C combines multiple paths
to trick a downstream entity.

As illustrated in Figure 13.5, assume there exist two valid paths p1 and p2,
each containing an info field (INF) and a sequence of hop fields (HFs). All hop
fields are chained by appending the previous hop field to the current hop field
and then calculating the MAC. The integrity of the previous hop field cannot be
checked, since the MAC verification key is not available to entities other than
the AS that generated the hop field.

Assume further that AS C is acting maliciously (active and on-path) and
replaces HFA with HFB (and the source AS if necessary) for an incoming

316

13.5 Data-Plane Path Manipulation

message and forwards it to AS D. From D’s point of view, the MAC validation
is successful. D cannot determine that the path has been modified by C and
thinks that the traffic is coming from B. On the reversed path, C reverts its
path changes and forwards the packet to A. MAC verification is still successful
because after reversing the path (indicated by the ‘up’ flag) the integrity is
verified with the next hop field instead of the previous one.

SCION, nevertheless, provides weak path integrity to guard against errors
and misconfigurations, as well as simple path alterations. Without chaining
of hop fields, any end host could simply splice valid paths by combining hop
fields. The chaining prevents such attacks by end hosts, but does not prevent
active path alterations by malicious routers on the path. However, an off-path
entity cannot attract or influence the flow.

Using OPT, SCION can provide a strong notion of path integrity. The
destination can verify that the path has not been modified while traversing the
intended hops.

13.5.5 Path Segment Replacement

In a manner similar to path splicing, an on-path attacker may replace one or
more entire path segments of a packet with different, valid segments, which he
can obtain for instance from path servers. The whole segment must be replaced
as otherwise the next hop’s verification of its hop field will fail and the packet
will be dropped. This leads to an interesting property of on-path forwarding
attacks, which we call weak detectability: an attacker cannot manipulate a
packet’s path information to disguise her own presence on the path.1 This
property is considered to be weak, since the receiving host does not know
which of the hops on the manipulated path is the attacker, and cannot even tell
whether a segment replacement attack has taken place. We can guarantee a
stronger detectability property by using the SCION packet security extension
or OPT. Since the SCION packet security extension provides end-to-end path
integrity protection, and OPT provides origin and path validation, any segment
replacement will be noticed at the receiving end host. Strong detectability in
this sense does not imply the ability to tell which of the nodes were acting
maliciously, only that some of them were (OPT provides no fault localization
mechanism).

This attack’s restriction that the path may only be replaced by a combination
of valid path segments can be partially lifted. The adversary can modify
the already traversed portion of the current segment and past segments in a
completely arbitrary manner (for instance, deleting and adding valid and invalid
hop fields). There is some risk of detection for the attacker, since such a fake

1While hop fields do not contain globally valid AS identifiers, publicly available segments at
path servers can be used to map hop fields to AS names, and thus to extract the sequence of
ASes that the packet claims to have traversed.

317

13 Security Analysis

segment will not be registered with the path servers. An unknown segment
being used implies that either that segment is non-registered (hidden) or a
segment replacement attack has taken place. If the receiving host knows that
the sender does not make use of any hidden segments, then such an attack is
strongly detectable.

In segment replacement attacks, the attacker is able to transparently revert
any changes to the segments on replies by the destination. For instance, if an
attacker M is an intermediate AS on the path of a packet from A to B, then M
can replace the packet’s past path (leading up to, but not including M). The new
path may not be a valid end-to-end path. However, when B reverses the path
and sends a new packet, that packet would reach M, who can then transparently
change the invalid path back to the valid path to A. The SCION packet security
extension and OPT make this attack strongly detectable.

Wormhole Attack

Similarly to wormhole attacks on the control plane (see Section 13.4.4), two
colluding attackers in the network topology can create a variety of different
wormhole attacks, if at least one of the attackers is on-path. We note that
there are fundamental limits to path validation with respect to wormhole at-
tacks, which also apply to SCION even when using the SCION packet security
extension and OPT. We refer the reader to Chapter 12 for more details.

13.6 Censorship and Surveillance

In this section, we discuss attacks that target the integrity and confidentiality of
communication traffic. If a malicious AS resides on the path between source
and destination, it is able to inspect the traffic between the communicating
endpoints. On-path adversarial traffic inspection is inevitable in any network
infrastructure, including today’s Internet. Therefore, endpoints need to use
encryption to hide sensitive data. Otherwise, a cautious on-path adversary can
easily eavesdrop passively on the link. An active adversary can take a step
further and alter data of passing packets, or just drop them.

Increased Confidentiality Against Censorship and Surveillance

On-path traffic inspection is often referred to as surveillance. The scope of such
an attack can be scaled to target a large number of victims. A powerful attacker
can either passively monitor traffic (possibly at multiple observation points) or
actively try to redirect traffic for inspection.

318

13.6 Censorship and Surveillance

In contrast to today’s Internet, SCION has a number of built-in features that
natively protect the confidentiality of data, even without employing encryption
of the data.

First, SCION’s ISDs prevent entities in remote ISDs from manipulating the
local control plane, preventing adversaries from tricking other networks into
sending traffic through them. Inside ISDs, the core may appear to be a good
vantage point for performing surveillance. Oppressive states may collude with
or compel their local ASes to perform surveillance. However, peering links
offer an alternative path out of the ISD without traversing the core. Due to
source-selected paths and path transparency, senders can select paths through
ASes they trust.

Second, SCION’s native multipath communication hampers surveillance in
that an adversary would have to be present on all paths that a traffic flow is
using concurrently, which would result in a costly effort since path selection
in SCION is very agile and unpredictable, meaning that end hosts can select
paths based on an arbitrary selection process and change this selection at any
time. Moreover, even if the adversary could eavesdrop on all the paths, it would
need to correlate the packets that traversed different links but originate from the
same user, which causes much higher overhead for the surveillance.

In addition to these basic mechanisms, SCION offers advanced techniques
such as APNA [153], an architecture that provides strong source accountability
and privacy-preserving communication. APNA appoints ISPs to authenticate
hosts and their packets in the network and anonymize the identities of commu-
nicating partners. Moreover, state-of-the-art encryption mechanisms such as
TLS 1.3 are provided in SCION for encapsulation of data traffic.

Anonymous Communication Against User and Host Identification

The act of communication on the Internet inevitably leaks information. In
particular, network headers reveal information (e.g., source address, flow infor-
mation), which might threaten anonymous communication and privacy. Based
on this information, a state-level adversary could be enabled to enforce cen-
sorship. To counteract identification of users and hosts, SCION proposes the
extensions HORNET [49] and OTA [156].

HORNET is a low-latency onion routing system that operates at the network
layer and makes use of symmetric cryptography for data forwarding. It offers
payload protection by default using a shared secret key between endpoints and
routers and can defend against attacks that exploit multiple network observation
points. Instead of keeping state at each relay, connection state (including,
e.g., onion layer decryption keys) is carried within packet headers, allowing
intermediate nodes to quickly forward traffic without per-packet state lookup.

OTA uses per-packet one-time addresses, which are issued by ASes to their
customer hosts. Each one-time address is only used once as either a source or a

319

13 Security Analysis

destination address. This eliminates flow information from packet headers —
implicitly (e.g., the standard 5-tuple in TCP/UDP packets) and explicitly (e.g.,
flow identifier) — while still allowing demultiplexing of seemingly unrelated
packets to flows.

13.7 Attacks Against Availability

In this section, we discuss the effect of attacks targeting the availability of the
SCION infrastructure using popular attacks also known in the current Internet,
as well as SCION-specific attacks.

13.7.1 (Distributed) Denial-of-Service Attacks

Today’s Internet lacks native mechanisms to defend against denial-of-service
(DoS) attacks. The configuration of many of today’s networks even facilitates
the execution of DoS attacks. For instance, many ISPs on the Internet today
do not enable protection against source address spoofing [7, 18, 33, 87]. The
Internet does not offer victims inbound path selection, precluding path agility
(i.e., quickly switching to a better-provisioned path) in the event of an attack.
In addition, due to the revenue model, ISPs lack incentives to address DoS
attacks, which contributes to the pervasiveness and increasing occurrences of
DoS attacks on end hosts, servers, and network infrastructure. In fact, DoS
attacks have become such a common occurrence [139] that they have spawned
an entire industry of content distribution networks, cloud-based DoS mitigation
systems, and a wide range of middleboxes aiming to help reduce the impact of
attacks. Unfortunately, even when these systems are used, networks may be
unavailable if the adversary can generate sufficient traffic to cause congestion
in the core of the network, or can exploit a flaw or limitation in the defense
system.

SCION’s core defense against DoS is to enable inter-domain traffic man-
agement and resource allocation. The five core mechanisms are: (a) path
announcements with a short lifetime, (b) non-registered (or hidden) paths, (c)
multipath communication, (d) source authentication using OPT, and (e) SIBRA.
These mechanisms can guarantee communication for two benign communicat-
ing entities and can mitigate the power of network-level congestion even for the
case of publicly accessible services. We will discuss these mechanisms in more
detail.

DoS on a Host and Application-Layer DoS

As an inter-domain routing architecture, SCION does not aim at providing
specific defenses for application-layer DoS attacks [163], such as exploiting

320

13.7 Attacks Against Availability

a vulnerability on a service. That is, if a publicly accessible SCION down-
segment to the destination exists, any remote end host will be able to send traffic
to that destination — just as in today’s Internet. However, the destination can
announce paths with limited lifetime that will not be renewed once an attack is
detected. Alternatively, the destination could insist on source authentication to
filter out unwanted hosts or source ASes, and preferentially handle requests by
known clients, or requests originating from trusted ASes.

DoS on a Domain and Volumetric DoS

Attackers may attempt to attack an entire AS by sending large amounts of traffic,
specifically attacking the AS’s upstream links. On the Internet today, victims
are forced to over-provision upstream links to account for peak bandwidth
utilization, or alternatively must be able to rapidly add additional capacity when
an attack is noticed. In SCION, victim ASes have control over inbound paths
through which they are reached, thus enabling the following options:

• The victim has the ability to end the attack, along with inbound con-
nectivity, by removing the public down-segments from the path servers.
Once the paths to the victim are no longer available, the attacker can only
continue to send traffic until the path expires, since an end-to-end path
can no longer be built or used thereafter. To shorten the amount of time a
path can be misused, the domain can announce paths with short lifetimes
(e.g., 10 minutes).

• The previous option effectively terminates the attack, but also (deliber-
ately) terminates connectivity to the victim AS. In cases where the victim
wants to continue to make paths available, but only to a smaller set of
authorized senders, the victim ceases publishing the paths to a path server,
and temporarily distributes non-registered (or hidden) paths out of band
to authorized senders (see Section 7.2.5 on Page 137).

• High availability can be achieved through multipath communication: as
with today’s Internet, ASes may peer with multiple ISPs to increase
availability in case of attack. However unlike today’s Internet, SCION
allows ASes to make use of multiple paths concurrently, requiring the
adversary to simultaneously and continuously flood all upstream links
of a victim AS. This requirement greatly increases the attacker’s effort.
Further, SCION makes it easy to be multi-homed.

• DoS attacks in today’s Internet often use packet reflection to redirect
large volumes of traffic to a specific entity and hide the origin of their
attack. Using the SCION packet security extension or OPT extension,
SCION can authenticate the source address of each packet, prioritize
authenticated traffic, and thus effectively mitigate DoS attacks using
source address spoofing.

321

13 Security Analysis

• Finally, SIBRA offers differentiated inter-domain resource allocation
for fine-grained bandwidth control of individual flows, as described in
Chapter 11.

DoS on a Link

Attacks such as Coremelt [231] and Crossfire [129] generate seemingly benign
traffic that traverses specific inter-AS links. These links are usually high-
capacity and frequently used, so that their saturation (and hence lack of avail-
ability) can impact large portions of Internet traffic. SCION’s source-selected
paths may allow attackers to target specific links more effectively than in today’s
Internet since the sender has more control over the end to end path. However,
the current Internet route optimization process also introduces network bottle-
necks [128].

SCION can defend against DoS by having core path servers keep track of
path requests and by balancing responses across links as necessary. If SIBRA is
actively deployed, then balancing is not strictly necessary. SIBRA will allocate
a fair share of bandwidth to all authorized senders.

DoS on Essential Infrastructure Services

SCION’s operation depends on the availability of beacon servers, path servers,
name servers, and certificate servers for regular network operations; if any one
of these services is not available within a domain, paths may fail to be created,
disseminated, or authenticated. As such, the availability of these infrastructure
services is of paramount importance to SCION.

The simplest way to provide high availability of these services is by replica-
tion. SCION’s current codebase uses a distributed consistency service based on
Apache’s ZooKeeper [11]. We use this service to share state amongst the vari-
ous infrastructure elements, so that, for example, several path servers all know
the up-to-date set of paths. Once the service is operational, a master server is
elected automatically, while all standby servers replicate the master state. If the
master does not respond within a period of time, a new master becomes active.
As additional capacity is needed, new standby servers can be added to the pool
without downtime. Executing a DoS attack against infrastructure services thus
requires sufficient resources to continually exhaust resources of all standby
servers that are part of the pool. Moreover, for all requests, load-balancing
amongst all the active servers is deployed by default. The details of SCION
server failure resilience are described in Section 7.4 on Page 146.

In addition to replication, ASes within an ISD can rate-limit inbound requests
originating from outside the ISD. This can be done generally for all external
ISDs based on internal server capacity, or on a per-source-ISD basis. For

322

13.7 Attacks Against Availability

requests that initiate from inside the ISD, SCION provides visibility and thus
sources of excessive traffic requests can be identified.

Packet Replication Attacks

In packet replication attacks, the adversary resends packets previously received
from other nodes. Compared to sending random packets, this has the advantage
that replayed packets might bypass simple firewalls or intrusion detection
systems. The replicated packets can be fresh or “stale” (packets that are delayed
past a certain time). With large numbers of packets replayed, both the bandwidth
of the network and the computing power of the involved nodes are uselessly
consumed. This can be used to perform a DoS attack on victims. Furthermore,
if a network has an accounting mechanism deployed (e.g., for fair resource
sharing), a malicious entity could use packet replication to perform a framing
attack. To prevent such replay attacks, we have designed a high-speed in-
network replay detection system [155], which we plan to integrate into SCION
in a future version.

In today’s Internet, the attacker typically would need to attract traffic from
the victim. The observed traffic could then be replicated and re-injected into
the network. In SCION, such attacks are harder since (a) an attacker must be
on-path to successfully spam a victim with a replicated packet, and (b) SCION’s
path transparency helps to identify the malicious entity.

13.7.2 Forwarding Loops

Forwarding loops occur when packets traverse the same subset of ASes multiple
times (see the dashed red line in Figure 13.6). Each AS in this subset is
traversed twice. The optimal path (green dotted line) would not include the
loop but instead use a shortcut. The impact of this attack might be limited when
considering a single attacker, but if a collaboration of malicious entities exploits
this possibility, the availability of the intermediate ASes (e.g., on a network link
between source and destination ASes) can be affected.

Apart from enabling attacks, forwarding loops are a design flaw and should be
avoided in a clean-slate design. SCION prevents forwarding loops through two
mechanisms. First, loops within a path segment are prevented in the beaconing
process, where an AS ensures not to send a beacon to another AS that is already
part of the path. Second, a valid SCION path is constructed by at most one
path segment of each type (up-segment, core-segment, and down-segment).
Since the up-segment and down-segment contain at most one core AS, and the
core-segment is loop-free, no loop containing core ASes can be created by the
combination of the three path segments. The combination of an up-segment and
a down-segment, however, can result in a single loop if the sender is malicious
and does not create a shortcut. This case is illustrated in Figure 13.6. Not only

323

13 Security Analysis

A B

Figure 13.6: A forwarding loop occurs if a packet is sent along the dashed red
path to get from source A to destination B. Using a shortcut as
represented by the dotted green path avoids the loop.

can such maliciously constructed paths be detected, but also legitimate nodes
can avoid such loops by constructing shortcut paths.

13.7.3 A Note on Resource Exhaustion in General

Today’s Internet suffers from various cases of resource exhaustion, some of
which stem from design decisions that no longer meet the requirements of
growth (e.g., the exhaustion of the IPv4 space), from misconfiguration errors
(e.g., the advertisement of bogus IP prefixes that flood BGP border tables), or
from malicious activities that explicitly aim at exhausting resources (e.g., DoS
attacks against vulnerable services).

To circumvent resource exhaustion, SCION generally avoids keeping state in
performance-critical infrastructure wherever possible. For instance, to prevent
state-exhaustion attacks and state inconsistencies, routers in SCION do not
keep any forwarding state. However, resource exhaustion at any point in the
infrastructure cannot fully be excluded. Hardware and computational power are
limited and will be exhausted at some point, if the queuing rate of incoming
requests is higher than the processing rate.

SCION extensions that use asymmetric cryptographic operations during ses-
sion setup are susceptible to resource exhaustion, considering that asymmetric
cryptographic operations are several orders of magnitude slower than symmetric
ones. Too many sessions initiated in a short period of time by an adversary
controlling multiple endpoints can effectively exhaust memory and computation
resources of a victim. Apart from extensions, SCION uses signatures in the
control plane. However, they are used only between infrastructure elements and
the number of messages is limited by the number of ASes.

324

13.8 Absence of Kill Switches

Asymmetric cryptography not only suffers from a (relatively) high overhead,
but also requires the public keys of ASes and end hosts to be available. SCION
uses the Dynamically Recreatable Key (DRKey) protocol, as described in
Section 12.5, which enables routers to derive symmetric cryptographic keys
on the fly from a single local secret. A sample use of DRKey in SCION is
SCMP (see Section 4.2.5), the SCION alternative to ICMP, where it is used to
efficiently create authenticated SCMP messages.

13.8 Absence of Kill Switches

Monopolistic trust root architectures such as DNSSEC and BGPsec enable
entities in possession of private keys to shut down portions of the namespace
controlled by those keys. The introduction of these kill switches into DNS and
BGP have created skepticism and concern over the potential outages that could
arise should private keys be misused or fall into the wrong hands [215].

Briefly, monopolistic trust architectures work by delegating trust from a
top-level key to lower-level keys. Due to this hierarchical trust structure, each
key has full control over keys beneath it in the hierarchy. Kill switches work by
revoking or maliciously substituting a public-key certificate at a specific point of
the hierarchy (e.g., the certificate for the root zone in DNSSEC). The incorrect
certificate will cause downstream signature validations to fail. A compromise
of the top-level zone is the worst-case scenario; the entire namespace can be
shut down. However, targeting specific zones lower in the hierarchy is also
possible.

In DNSSEC and BGPsec, root keys are secured through multiple layers
of physical security accompanied by a key rollover schedule. However, the
physical location and key management processes must still be performed in
a known jurisdiction; for DNSSEC, key management ceremonies are held
quarterly at Verisign facilities in the United States. Even though the key rollover
ceremony is monitored and logged, it may still be possible that a state-level
adversary can gain access to root-level keys.

We note that private keys can be leaked through several means. Attackers
might exploit a software vulnerability in a system with access to the key, or
use social engineering for access to that system. Employees may go rogue
or be threatened/extorted to reveal the keys. Short asymmetric cryptographic
keys (e.g., RSA keys shorter than 1,024 bits) are likely breakable today by
well-sponsored nation states actors, or can be broken in the future as computing
speeds continue to increase. The broad attack surface makes it challenging to
implement comprehensive protection mechanisms.

Even without key compromise, centralized architectures risk being unavail-
able if one or more of their critical services becomes unavailable. For example,

325

13 Security Analysis

a denial of service on services publishing revocation lists will cause clients to
receive an incorrect view of currently valid certificates.

SCION’s trust architecture is fundamentally different from that in the cases
described above. In SCION, each ISD manages its own trust roots instead
of a single global entity providing those roots. This structure gives each ISD
autonomy in terms of key management (i.e., all key management operations
can take place without contacting a parent authority) and in terms of trust. All
entities inside the ISD already subscribe to the ISD’s policies. What SCION
enables is trust transparency for entities to know what additional roots need to
be trusted for a given communication.

Despite not having centrally controlled trust, local kill switches are to some
extent possible in SCION. The following sections explain these cases and
possible countermeasures.

13.8.1 Local ISD Kill Switch

As in the case of DNSSEC and BGPsec, executing a kill switch inside a local
ISD can be done at different levels of the AS-level hierarchy. One difference in
SCION is that core ASes cannot be switched off by a parent authority since they
manage their own cryptographic trust roots (see below). Another difference is
that the attack vector of intra-ISD kill switches has only two entry levels; the
core certifies all ASes in the ISD, but ASes do not certify ASes below them. A
special case is the situation of nested ISDs (see Section 3.6 on Page 56), where
a non-core AS also acts as a core for another ISD, resulting in an even more
limited scope due to the isolation.

If the core’s root keys are compromised, or the core is acting maliciously, then
it is trivial to shut down communications traversing the core. Moreover, the core
might stop propagating PCBs, precluding the discovery of new paths. In this
case, downstream ASes will notice that PCBs are no longer being propagated,
but all previously discovered (and still valid) paths are still usable for data-plane
forwarding until they expire.

Perhaps a more stealthy kill switch would be to shut down path servers
in victim ASes. While this cannot be done remotely, an adversarial entity
controlling an ISD (e.g., a government) might compel core and non-core ASes
to stop replying to path requests. Alternatively, the compelled ASes might return
only a subset of all available paths. If this attack were used in conjunction with
blackholing, senders in the ISD would have difficulty getting traffic out of the
ISD. We would like to emphasize, however, that such attacks are even easier to
perpetrate in today’s Internet. In SCION, existing paths can continue to be used
in the data plane as long as the traversed ASes allow the forwarding.

326

13.9 Resilience to Path Hijacking

13.8.2 Remote ISD/AS Kill Switch

Since SCION ISDs independently manage their own cryptographic keys and
namespace, it is not possible for a remote attacker (outside the target victim’s
ISD) to cause a kill switch in a different ISD. That is, without access to the
private trust root keys in the remote ISD, the attacker is limited to data-plane
attacks. Even if private keys became available to a remote attacker, they would
need access to an AS inside the remote ISD to inject faulty information.

13.8.3 Recovery from Kill Switches

In the event of a non-core AS kill switch, the impacted AS needs to obtain a
new certificate from the core. This process will vary depending on internal
issuance protocols.

If a core AS’s offline root key is compromised, the TRC must be re-issued,
which could be time-consuming since it needs to be certified by a quorum of
core ASes and cross-signed by neighboring ISDs. AS certificates may not need
to be re-issued as long as the core AS’s online root key was not breached, in
which case the existing online root key can be re-signed by the new offline root
key.

If the core AS has not been compromised, but is instead acting maliciously
(e.g., by not propagating beacons downstream or tampering with responses
for paths or certificates), one way to recover is for downstream ASes to self-
organize and form a new ISD. By now operating autonomously, the new ISD
can begin path discovery and traffic forwarding.

SCION, unlike BGP, has no notion of routing convergence. Instead, the
flooding of beacons disseminates topology information. This means that in the
worst case, if all paths must be re-created, fresh paths are established after a
single flood has reached all ASes.

13.9 Resilience to Path Hijacking

In this section, we analyze the capabilities of an attacker hijacking IP tunnels
that are operating as an overlay on top of the legacy Internet (see Section 10.1.2
on Page 194). More precisely, we discuss the properties that an incrementally
deployed SCION network can achieve, where different SCION ASes need
to connect via inter-site tunnels with traffic traversing the current Internet.
Our results show that SCION even deployed as an overlay-only network still
provides better resilience to path hijacking than the legacy Internet. Further
analysis of partially deployed SCION is presented by Lee et al. [152].

327

13 Security Analysis

13.9.1 Deployment Simulation

To evaluate the deployability and availability benefits of SCION under partial
deployment, we perform several BGP simulations by extending the BSIM
simulator [130], where the BGP paths are computed using route selection
based on the standard BGP routing policies (Gao-Rexford Model [91]). As
our topology dataset, we use a recent snapshot of the CAIDA Inferred AS
Relationship dataset.

Tunneled Path Resilience

In this section, we investigate the potential benefit (i.e., resilience against prefix-
hijacking attack) that a path constructed using a series of short tunnels can
provide over a single BGP path. For our study, we use the following notation:

0

0.2

0.4

0.6

0.8

1

H
ija
ck
 P
ro
b
a
b
ili
ty

 LBGP=4, Weak Adversary LBGP=5, Weak Adversary

1 2 3 4 5 6 7

Number of Adversaries

0

0.2

0.4

0.6

0.8

1

H
ija
ck
 P
ro
b
a
b
ili
ty

LBGP=4, Strong Adversary

1 2 3 4 5 6 7

Number of Adversaries

LBGP=5, Strong Adversary

LT ≤6 (TN=3, TL=3) LT ≤6 (TN=4, TL=2) LT ≤9 (TN=4, TL=3) LT ≤8 (TN=5, TL=2) BGP

Figure 13.7: Probability of hijacking BGP and SCION paths under four tunnel
settings while varying the number of adversaries. The upper and
lower halves show the results for weak and strong adversary mod-
els respectively; and the left and right halves show the results for
LBGP “ 4 and LBGP “ 5, respectively.

• pASx,ASyq: BGP path (list of ASes) between ASx and ASy,
•
ˇ

ˇpASx,ASyq
ˇ

ˇ: length (expressed in AS-level links) of path pASx,ASyq,
• TN : number of deploying ASes AS1,AS2, . . . ,ASTN that form the overlay

end-to-end tunnel,
• TL: length of the longest tunnel segment, i.e., max

ˇ

ˇpASi,ASi`1q
ˇ

ˇ for
i P r1,TN´1s,

• LBGP: length of the BGP path between AS1 and ASTN , i.e.,
ˇ

ˇpAS1,ASTN q
ˇ

ˇ,

• LT : length of the tunneled path between AS1 and ASTN , i.e.,
řTN´1

i“1ˇ

ˇpASi,ASi`1q
ˇ

ˇ.

328

13.9 Resilience to Path Hijacking

We assume that the first node of an end-to-end tunnel path (AS1) is the source
while the last (ASTN) is the destination. Then, LBGP expresses the length of
the BGP path between source and destination. We also assume that traffic
from source to destination over the end-to-end tunnel traverses overlay nodes
AS2,AS3, . . . ,ASTN´1 in that order. The tunnel’s path on the AS-level is a
concatenation of BGP paths:

pAS1,AS2q,pAS2,AS3q, . . . ,pASTN´1,ASTN q
For our simulation, we consider two adversary strategies designed to hijack
traffic from source to destination: (a) a weak adversary, which announces
only the destination’s prefix; and (b) a strong adversary, which announces all
prefixes of AS2,AS3, . . . ,ASTN . In both cases an adversary launches attacks from
a randomly compromised AS, however he cannot compromise ASes on the path
between source and destination.

Our experiment simulates eight scenarios by varying TN , TL, and LBGP to
analyze the resilience that tunnels can provide against prefix-hijacking attacks.
For each scenario, while incrementing the number of adversarial ASes from
one to seven, we construct and simulate 1,000 random and unique tunnel
deployments, where AS1 and ASTN are randomly chosen from multi-homed leaf
ASes and the other tunnel nodes are chosen from all other ASes. We focus on
multi-homed ASes, as they are more likely to start deploying an availability-
enhancing technology (according to a study [152], about 57% of all leaf ASes
are multi-homed).

Figure 13.7 summarizes the results of our simulation. In each graph, the
x-axis represents the number of adversaries (varied from one to seven) and the
y-axis represents probability values that an attack on the tunneled path will
be successful. The two figures on the left show the hijack probability of the
tunneled path for source and destination AS pairs that are four BGP hops apart
(LBGP “ 4); and, on the right five BGP hops apart (LBGP “ 5). Moreover, the
upper two figures show the results against weak adversaries while the lower
two figures show the results against strong adversaries. Lastly, each plot also
shows hijack probability for the BGP paths (green line with plus markers).

As expected, our results show that the hijack probability increases as the
number of adversaries increases, and that the probability is higher for the strong
adversary model than the weak adversary model. Furthermore, against the
weak adversary model, the probabilities of hijacking the tunneled paths are
similar for the two cases that have the same tunnel segment length (i.e., TL) but
different total length (i.e., LT) — on the upper two figures, the purple line with
diamond markers and the red line with inverted triangle markers almost overlap
with each other. This is because the weak adversary model can only attack the
last tunnel segment, i.e., (TN´1,TN), as the weak adversaries only announce the
prefix of the destination (i.e., TN).

329

13 Security Analysis

The results show that the tunneled paths have lower hijack probability than
the BGP paths even if the length of the tunneled path (i.e., LT) is longer than
that of the BGP paths (i.e., LBGP). However, the result also shows that if the
length of the tunneled paths becomes too long (e.g., twice the length of the
BGP paths), the tunneled paths become more susceptible to hijacking attacks.
However, in practice, it is highly unlikely that the tunneled paths would be
twice the length of the BGP paths.

Lastly, the results show that the composition of the tunneled path affects the
resilience against prefix-hijacking attacks: a tunneled path that is composed
of shorter individual segments is more resilient than a path that is composed
of longer individual segments. For the two cases where LT ď 6, the hijack
probability is significantly lower when the length of the individual tunnel is
kept shorter. In Figure 13.7, this can be seen by comparing the blue line with
‘x’ markers and the purple line with diamond markers. Moreover, the result
shows that the tunneled paths that have longer total length but shorter individual
tunnel segments (i.e., LT ď 8, red lines with inverted triangle markers) are
more resilient than the tunneled paths that have shorter total length but longer
individual segments (i.e., LT ď 6, blue lines with ‘x’ markers).

13.10 Summary

In this chapter, we have compared various security aspects of today’s Internet
with their SCION counterparts. We have shown that SCION provides built-in
security defenses against many well-known network attacks that plague today’s
Internet operators and users. We have also examined specific attack vectors
on SCION and showed that they either result in minimal impact or can easily
be detected and mitigated, especially when using the SCION packet security
extension or OPT.

We finally refer our readers to external evaluations of future Internet archi-
tectures (FIAs), for instance to a recent study by Ding et al. [70], which also
demonstrate that the security properties achieved by SCION are stronger than
those of other FIAs.

330

14 Power Consumption

DAVID BARRERA, CHEN CHEN, ADRIAN PERRIG

The Internet, including user equipment, data transmission media, data centers,
and access networks, requires a considerable amount of power, consuming
nearly 1% of annual electricity production worldwide in 2010 [111]. Around 50
GW of power is consumed by network equipment, and this number is expected
to double by 2020 [245]. Increased power consumption not only implies greater
monetary cost, but also has an expanding environmental impact in the form
of carbon footprint and pollution [96]. Reversing the trend is imperative and
would pay off massively.

As a first step towards measuring and comparing the power consumption of IP
networks and FIAs including SCION, we focus on the power consumption of the
data plane. Since data-plane traffic represents 83% of the total power consumed
by the Internet (compared to 17% consumed by the control plane [38]), our
analysis covers the largest component of power consumption in IP networks
and FIAs.

We observe that the designs of several candidate network architectures mainly
vary in two dimensions: the design of packet-forwarding methods and the design
of content cache methods. With respect to packet forwarding, SCION and
NEBULA [9] both use packet-carried forwarding state (PCFS), which embeds
forwarding information into each packet. In comparison, IP and NDN [184]
routers maintain route tables and perform a route table lookup (RTL) to forward
each packet. With respect to content-caching designs, NDN proposes pervasive
caching, which equips each NDN router with a content cache. IP, SCION,
and NEBULA enforce no requirement for content caching and therefore can
use both end-to-end communication and edge caching, which is often seen in
content delivery networks (CDNs). We summarize the two design dimensions
in Table 14.1.

Accordingly, in addition to evaluating SCION’s power consumption, this
chapter seeks to answer a more fundamental question: what impact do design
choices for packet forwarding and content caching exert on a network architec-
ture’s power consumption? Answers to the question not only help us to consider
SCION’s power consumption, but also guide us in designing a power-efficient
network architecture.

331

14 Power Consumption

Forwarding Technique Cache Placement

Architecture PCFS RTL Edge Pervasive

IP TCAM 3
NDN SRAM-BF 3
NEBULA PoC & PoP 3
SCION Hop Field 3

Table 14.1: Methods used by network architectures for making forwarding
decisions and caching content. PoC and PoP stand for proof of
consent and proof of provenance, respectively.

The text in this chapter is based on the paper “Modeling Data-Plane Power
Consumption of Future Internet Architectures” by Chen Chen, David Barrera,
and Adrian Perrig, which was published in the Proceedings of the IEEE Con-
ference on Collaboration and Internet Computing (CIC) 2016 [50]. From our
analysis in the paper we were able to draw several observations: (a) the use
of PCFS in SCION can be more power efficient than RTL in today’s Internet
(despite the larger packet size and cryptographic computations of PCFS); (b)
based on our workload assumptions, end-to-end communication consumes less
power than using in-network caches; and (c) there is no substantial difference
between energy footprints of networks with edge caching as compared to ones
with pervasive caching.

Chapter Contents

14.1 Modeling Power Consumption of an FIA Router 332

14.2 Simulation . 334

14.1 Modeling Power Consumption of an FIA
Router

To model power consumption, we propose a generic router model that captures
the forwarding behavior of both IP routers and FIA routers, as Figure 14.1
shows. In accordance with the two design principles (forwarding method and
caching method) that we are investigating, we separate the content cache module
and the forwarding-decision module from other router components. Table 14.1
summarizes the design choices that FIAs use for these two different modules.

332

14.1 Modeling Power Consumption of an FIA Router

Packets

Pfwd

Next Hop

Pcc

Queue
Management

Packet
Processing

Media
Access

Routing Signaling
Control System

Optical Module
Serialization &
Deserialization

Fabric Wrapper
FEC Accessory

Pbase

Content
Cache

Forwarding
Decision

Figure 14.1: Abstraction of the forwarding behavior of an FIA router. We
present a similar router-component dissection to Tamm et al. [236].

We group the rest of the router components, such as queue management and
switching fabric, which are common components for both IP and FIA routers,
in Figure 14.1, and treat their power consumption as a baseline for our analysis.

We denote the total power consumed by an IP or FIA router (measured in
watts) to forward packets as Parch, the power consumption of the local content-
caching system as Parch

cc , the power consumption of making forwarding decisions
as Parch

fwd , and the baseline power consumption of all the other components as
Pbase. The superscript “arch” is substituted by IP, NDN, SCION, or NEBULA.
Accordingly, Parch “ Pbase`Parch

fwd `Parch
cc .

Example. We take PSCION
fwd as an example and refer the interested reader to

our paper [50] for a complete description of packet forwarding and content
cache models of IP, NDN, and NEBULA.

SCION uses packet-carried state for finding the interface via which to forward
a packet. The forwarding decisions reside in the packet header and thus no inter-
domain routing table needs to be stored on routers. The lack of routing tables
(and thus lack of relatively expensive table lookup operations) helps reduce the
power consumption of packet forwarding, PSCION

fwd . However, SCION routers
use cryptographic primitives to verify the integrity of the routing decisions
embedded in the packet headers, which again adds to PSCION

fwd .

333

14 Power Consumption

Since the hop-field verification is the only computation-intensive operation
in the forwarding process of SCION, we consider the computation of cryp-
tographic verification when modeling PSCION

fwd . The verification process on a
SCION border router only requires one AES-MAC computation to verify the
hop field. As a result, the energy consumed by a SCION border router PSCION

fwd
can be expressed as follows:

PSCION
fwd “ I ¨EAES

spkt
(14.1)

where I is the router’s throughput and spkt is the mean packet size. A typical
Helion AES core can achieve 128-bit AES throughput above 40 Gbps (320M
AES ops/s) [108] based on an implementation using Virtex-7 FPGA with 6.6 W
on-chip power consumption [257]. Thus, we choose EAES “ 20nJ{op.

14.1.1 Power Efficiency of SCION’s Forwarding Logic

To investigate the power efficiency of SCION packet-forwarding logic, we
compare the packet-forwarding logic of SCION with those of IP, NDN, and
NEBULA using the complete model and parameter settings in the full pa-
per [50].

Figure 14.2 illustrates the results when the link speed varies from 1 Gbps
to 40 Gbps. In general, regarding power consumption, the packet-forwarding
logic using PCFS holds advantages over that with RTL (except that NEBULA
routers consume more power than NDN routers with small FIBs). Specifically,
SCION’s packet-forwarding logic consumes 2–3 orders of magnitudes less than
those of IP, NEBULA, and NDN with different FIB sizes. We can attribute
SCION’s power efficiency to both usage of PCFS and its simple forwarding
logic.

14.2 Simulation

Based on the model of FIA routers in Section 14.1, we now use a holistic
method to demonstrate the power consumption of SCION and other FIAs in
content distribution scenarios. We conduct our experiments by simulating
the forwarding behavior of the IP network and FIAs when used for content
distribution. We provide a sensitivity analysis that evaluates the impact of
changing parameters in our paper [50].

14.2.1 Simulation Setup

The topology used in our simulations is based on the router-level topology of
education backbone networks (Abilene and Geant) and Rocketfuel (Telstra,

334

14.2 Simulation

0 5 10 15 20 25 30 35 40

Link Speed (Gbps)

10-1

100

101

102

103

104

Po
w
e
r
C
o
n
su
m
p
ti
o
n
 (
W
a
tt
s)

IP@500K

NDN@500K

NDN@5M

NDN@50M

NEBULA

SCION

Figure 14.2: Pfwd under different link speeds for border routers. For the FIB size
of NDN, Perino and Varvello have suggested 20M entries [197].
Accordingly, we vary NDN’s FIB size from 500K entries to 50M
entries to demonstrate the influence of routing-table size on routers’
power consumption.

Sprint, NTT, Verio, Level3, AT&T) [227]. We follow the methods proposed by
Fayazbakhsh et al. [86] to approximate access networks by trees appended to
each point of presence (PoP). The internal nodes of the trees are border routers.

For content access patterns, previous work has suggested that a Zipf dis-
tribution closely approximates real-world content access from end hosts [86].
We use synthesized content access traces with α “ 0.99 (which approximates
US users’ behavior, as pointed out by Fayazbakhsh et al. [86]). For the query
distribution, we assume in our simulation that the leaf PoP generates queries
for content, where the number of queries generated is linear in the population
of the city where the PoP is located.

To control the content cache capacity, we define a cache budget ratio. Let R
be the number of routers capable of caching, C be the average cache capacity
of each router, O be the total number of pieces of content that would benefit
from caching, and s be the average size of each piece of content. We define
the cache budget ratio c “ RˆC

Oˆs . We choose c “ 5% as a baseline, which is

335

14 Power Consumption

0

0.5

1

1.5

2

2.5

3

3.5

Abilene Geant Telstra Sprint NTT Verio Level3 AT&T

SCION w/o Cache IP w/ Edge Cache
NDN NEBULA w/ Edge Caching
SCION w/ Edge Caching

Figure 14.3: Power consumption of end-to-end communication, edge caching,
and pervasive caching with capacity ratio c“ 0.05. All results are
normalized by SCION without content caching.

observed as a relationship between the CDN cache provisioning and the total
requested objects seen by a CDN server per day [86].

For edge caching used in IP, NEBULA, and SCION, we simply assume that
content requests are only served by each standalone cache server. We call this
strategy simple edge caching. For pervasive caching, we assume on-path cache
discovery, in which only content cached by the on-path routers is returned. For
cache eviction, we select the least-recently used (LRU) method as our baseline
strategy. Note that designing an optimal or high-performance cache replacement
strategy is out of scope for this investigation.

14.2.2 Simulation Results

Figure 14.3 shows the power consumed by different network architectures with
and without content caching. In particular, SCION without content caching
consumes 15-50% less power than other network architectures. On one hand,
SCION’s advantage arises from its efficient packet forwarding. On the other
hand, SCION’s design benefits from the fact that the small real-world locality

336

14.2 Simulation

of the content access pattern determines that caching content is less power
efficient.

Compared to SCION with edge caching, NDN with pervasive caching saves
only a marginal amount („2%) of power. Compared to IP with edge caching,
NDN consumes up to 16% less power. The result implies that pervasive caching
helps reduce power consumption, but the power reduction is limited. The
reason is twofold: (a) multiple-layer caching provides limited improvement
over single-layer caching, as indicated by previous work [86]; (b) pervasive
caching requires more power-consuming caching devices, which further reduces
the small advantage in power consumption.

We summarize our main observations as follows:
1. Network architectures that use packet-carried forwarding state instead of

routing-table lookups exhibit lower power consumption.
2. FIAs without caching consume less overall power compared to those that

use caching.
3. Under our workload assumptions, the use of pervasive caching results in

marginal reductions in power consumption.
Although the variability of these results is nontrivial and depends on fu-

ture technology innovations, which cannot be predicted, our results show that
SCION’s design not only results in a more secure and transparent operation,
but at the same time can be implemented without negative impact on power
consumption.

337

Part V

Specifications

339

15 Packet and Message Formats

ADRIAN PERRIG, STEPHEN SHIRLEY, PAWEL SZALACHOWSKI

In this chapter, we describe the header formats of SCION control and data
packets. We start with the description of the generic SCION header, which
consists of four parts: a common header, a forwarding path, an extensions chain,
and a layer-4 protocol header.

Chapter Contents

15.1 SCION Packet . 341

15.2 Control Plane . 355

15.3 PCB and Path Segment . 356

15.4 Path Management Messages 361

15.5 PKI Interactions . 362

15.6 SCMP Packet . 363

15.1 SCION Packet

A high-level layout of a SCION packet is presented in Figure 15.1. Before
discussing its components in detail in the following sections, we give a brief
overview.

• Common header (Section 15.1.1): Every SCION packet contains a
mandatory common header in the first 8 bytes of the packet. The most
important information encoded within the common header is the length
of the packet, the types of the source and destination address, the current
position in a path, and the type of the next header (an extension or layer-4
protocol).

• Addresses (Section 15.1.2): Source and destination addresses are placed
right after the common header. A SCION address consists of an ISD

341

15 Packet and Message Formats

Common header (8 bytes)

Addresses (12–40 bytes)

Forwarding path (var. length)

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

SCION
header

Extension header(s)

Layer-4 protocol and data

Figure 15.1: High-level layout of a SCION packet.

identifier, an AS identifier, and an end-host address. As end-host address-
ing in SCION is local to an AS, it allows ASes to use different address
spaces (e.g., IPv4, IPv6, or MAC addresses) to address their end hosts.
Consequently, SCION permits hybrid addressing, that is, source and
destination can have addresses of different types. The concatenation of
the source and destination addresses has to be aligned to a multiple of 8
bytes.

• Forwarding path (Section 15.1.3): The forwarding path consists of a
sequence of info fields (INF) and hop fields (HF), which contain informa-
tion required by border routers for packet forwarding. The forwarding
path has to be aligned to a multiple of 8 bytes. The current INF and HF
are indicated by pointers in the common header. Note that the forwarding
path is empty for SCION packets that do not leave the origin AS.
The concatenation of common header, addresses, and forwarding path
constitutes the SCION header.

• Extension headers (Section 15.1.4): A SCION packet can additionally
contain multiple extension headers. These are constructed as a chain (i.e.,
one extension points to the next), and the final extension points to the
layer-4 header. There are two types of extension headers:

– hop-by-hop extensions, processed by source and destination end
hosts, as well as by every border router on the path; and

– end-to-end extensions, processed only by source and destination
end hosts.

Extensions have to be aligned to a multiple of 8 bytes.

342

15.1 SCION Packet

• Layer-4 protocol and data (Section 15.1.5): The remaining data of the
packet is the payload, which is usually encapsulated within a layer-4
protocol.

In the remainder of this section, we describe the elements of a SCION packet
in detail.

15.1.1 SCION Common Header

The common header is an essential element that every SCION packet must
contain. The common header contains various fields such as the length of
the entire packet, the length of the SCION header, types of source and desti-
nation addresses, next header (an extension or upper-layer protocol), and the
current position of the packet on the path. The detailed format is presented in
Figure 15.2; its fields are described below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version DstType SrcType TotalLen

HdrLen CurrINF CurrHF NextHdr

Figure 15.2: The SCION common header (8 bytes).

• Version: The first common header field is the version number of the
SCION protocol. The field is 4 bits long; the current version of SCION
has version number 0.

• DstType / SrcType: As SCION is agnostic to the addressing scheme
used within an AS, the DstType and SrcType fields define the types
of addresses that communicating end hosts use within their ASes. The
address type implicitly defines the address length, and within a single
packet, the source and destination addresses can have different types
(hybrid addressing). The current implementation supports the following
three end-host address types:

– IPv4: IPv4 host address (4 bytes),
– IPv6: IPv6 host address (16 bytes),
– Service: The service address (2 bytes) is used to indicate the

desired SCION service (see Sections 7.4.6 and 15.1.2).
The complete SCION address, besides an end-host address, includes ISD
and AS identifiers, which are encoded within 4 bytes (the ISD identifier
is encoded within the most significant 12 bits, and the AS identifier is
encoded within the remaining 20 bits). Thus, the minimum size of a
single SCION address is 6 bytes, while the maximum is 20 bytes (see
Section 15.1.2). Each address type field is encoded within 6 bits, which
supports up to 64 different address types.

• TotalLen: total packet length in bytes. This field is 16 bits long, hence
the maximum length of a SCION packet is 65,535 bytes.

343

15 Packet and Message Formats

• HdrLen: length of the SCION header in bytes (i.e., the sum of the lengths
of the common header, the source and destination addresses, and the
path). All SCION header fields are aligned to a multiple of 8 bytes. The
SCION header length is computed as

HdrLenˆ8 (15.1)

The 8 bits of the HdrLen field limit the SCION header to a maximum
length of 2,040 bytes.

• CurrINF: pointer to the current info field of a forwarding path. This field
is used by a border router to identify (and verify) the current series of
hop fields (see Section 8.2). The pointer is updated by a router whenever
the last hop field of a path segment has been processed, and thus the next
router will start processing the first hop field of the next path segment.
The absolute byte offset to the current info field is computed as

CurrINFˆ8 (15.2)

For every SCION packet with non-empty forwarding path, we require

8`SrcLen`DstLen`AddrPadă CurrINFˆ8ă HdrLenˆ8 (15.3)

where 8 denotes the length of the common header, SrcLen and DstLen

are the lengths of the source and destination addresses respectively,
and AddrPad is an optional padding added to align the concatenation
of source and destination addresses to an 8-byte boundary (see Sec-
tion 15.1.2). If the forwarding path is empty, the CurrINF field is set to
0.

• CurrHF: pointer to the current hop field of a forwarding path. This
field is used by a border router to identify the current hop field, which
in combination with the corresponding info field allows packets to be
forwarded. For more information, see Section 8.2 on Page 164. An end-
to-end example of packet forwarding, including updates of the CurrHF
and CurrINF fields, is provided in Section 10.8 on Page 223.
The absolute byte offset to the current hop field is computed as

CurrHFˆ8 (15.4)

As above, for every SCION packet with non-empty forwarding path, we
require

CurrINFˆ8ă CurrHFˆ8ă HdrLenˆ8 (15.5)

As info and hop field pointers (CurrINF, CurrHF) are expressed within 8
bits, the maximum offset is 2,040 bytes. If the forwarding path is empty,
the CurrHF field is set to 0.

344

15.1 SCION Packet

• NextHdr: field that encodes the type of the first header after the SCION
header. This can be either a SCION extension or a layer-4 protocol such
as TCP or UDP. Values of this field respect and extend IANA’s assigned
internet protocol numbers [120], (e.g., TCP and UDP have numbers 6
and 17, correspondingly).

15.1.2 SCION Addresses

SCION addresses are placed in the SCION packet directly after the common
header (see Figure 15.1 on Page 342). Every SCION address consists of ISD
and AS identifiers, and an end-host address. The ISD identifier is globally
unique, the AS identifier is locally unique within the ISD, and the end-host
address is routable within the AS. We note that the local address assignment
should respect the rules of the address type being used, e.g., in the case of IPv4
the address space should either be RFC 1918 [210] private address space, or
public address space that is owned by the network. See Section 10.3 for more
details on the implications of the choice of end-host addresses.

The current SCION implementation uses 12 bits for the ISD identifier and 20
bits for the AS identifier. This allows up to 4,096 ISDs globally, and 1,048,576
ASes per ISD. However, the value 0 for both ISD and AS identifiers is reserved.
The size of the end-host address is variable and depends on the address type.
The length of a complete SCION address is thus also variable and is determined
as follows.

Type Size

IPv4 8 B
IPv6 20 B
Service 6 B

Table 15.1: Size of a SCION address, which depends on the type of the end-host
address.

The types IPv4 and IPv6 are used for standard unicast end-to-end communi-
cation. The combination of IPv4 or IPv6 as a source address and Service type
for a destination address is used for sending control-plane requests to a SCION
service. The type Service is introduced to inform the destination AS that a
given packet should be sent as an anycast packet to an instance of the correct
service. However, SCION does not dictate how such an anycast mechanism
should be implemented. (Our reference implementation uses the discovery
service — see details in Section 7.4.7 on Page 152.) As a concrete server is
queried through an anycast mechanism, a response to the request is sent as a
standard data packet (i.e., the server uses its own IPv4 or IPv6 address in the

345

15 Packet and Message Formats

source SCION address). The defined types of Service addresses are presented
in Table 15.2.

SCION source and destination addresses are placed in a SCION packet in
a way that enables border routers easy access to ISD-AS identifiers and the
destination address (which is read more frequently than the source address).
Namely, first destination and source ISD-AS identifiers are placed, which are
then concatenated with destination and source host addresses. If necessary, this
concatenation is padded to align the address block to an 8-byte boundary. For
uniform addressing with IPv4 or IPv6 end-host addresses, the padding is not
necessary as the concatenation of two SCION addresses is 16 and 40 bytes
long, respectively. However, hybrid addressing, e.g., IPv6 as source and IPv4
as destination host address, requires 4 bytes of padding. An example of how
addresses with different types are placed in a SCION packet is presented in
Figure 15.3.

0 11 31 43 63

DstISD DstAS SrcISD SrcAS

DstHostAddr

(IPv6)

SrcHostAddr (IPv4) Padding

Figure 15.3: Example of hybrid addressing: SCION addresses with different
types for end-host addresses.

15.1.3 Forwarding Path

To construct a forwarding path, an end host needs to extract and concatenate
info and hop fields, created during the path-segment construction process (see
Section 7.1). The forwarding path (i.e., in the data-plane format) is a list of such
fields placed in the SCION packet after the addresses. A high-level illustration
of a path is presented in Figure 15.4.

A single path can be composed of maximally three series of hop fields: series
of HFs extracted from an up-segment (that leads toward a core AS), HFs from
a core-segment (used for routing between core ASes), and HFs obtained from a
down-segment (to forward a packet from a core AS to the destination). None
of the series is mandatory, and the forwarding path is empty if a packet is sent
within a local AS. However, if a packet is sent to a remote AS, the order of the
series has to be preserved (e.g., HFs from a down-segment cannot precede HFs
from a core-segment, and HFs from a core-segment cannot precede HFs from
an up-segment).

Each list of HFs starts with an info field and at least two consecutive hop
fields. The current position of a packet on its path is determined through pointers
placed in the common header (see Section 15.1.1 for details).

346

15.1 SCION Packet

0 63

Info field
Hop field

Hop field
. . .

,

/

/

/

/

.

/

/

/

/

-

Up-segment

Info field
Hop field

Hop field
. . .

,

/

/

/

/

.

/

/

/

/

-

Core-segment

Info field
Hop field

Hop field
. . .

,

/

/

/

/

.

/

/

/

/

-

Down-segment

Figure 15.4: High-level layout of a path.

Info Field (INF)

An info field (INF) starts every series of HFs from a given path segment in
the data-plane path format. It identifies the type of the path, and contains
information required for hop-field validation. It also contains the length of
the corresponding path segment, and it carries the identifier of the ISD which
initiated the propagation of the path. The format of the info field is depicted in
Figure 15.5.
0 1 2 3 4 5 6 7 39 55 63

r r r r r P SU Timestamp ISD SegLen

Figure 15.5: Format of an info field.

The first field of every info field is called Flags and is eight bits long. The
bits of this field identify the type of a path as follows:

• r: unused and reserved for future use.
• P: peering-shortcut flag. If set to true, then the forwarding path is built as

a peering-shortcut path (see Section 8.2.1). It is only valid if the shortcut
flag is also set.

• S: shortcut flag. If set to true, then the forwarding path is built as a
shortcut path (see Section 8.2.1).

• U: direction (up-segment) flag. If set to true, then the HFs from the
corresponding path segment have an up-segment orientation, otherwise
the HFs have a down-segment orientation.

347

15 Packet and Message Formats

The exact meaning and interpretation of the flags in a constructed forwarding
path is described in Section 8.2.

The second field of every info field is a timestamp created by the initiator
of the corresponding PCB. The timestamp is expressed in Unix time, and is
encoded as an unsigned integer within 4 bytes with 1-second time granular-
ity. This timestamp enables validation of the hop field by verification of the
expiration time and MAC. The next field uses 2 bytes for encoding the ISD
identifier. For up- or down-segments, this identifier denotes the ISD that hosts
the path segment, while for a core-segment, it identifies the ISD that initiated
the propagation of the corresponding beacon. The last, a 1-byte field SegLen

encodes the length of HFs that were extracted from the corresponding path
segment and placed within the forwarding path (the actual length in bytes is
computed as SegLenˆ 8). Note that this field is different from SegLen in a
PCB, which is set to 0 during the beaconing. On the data plane, SegLen denotes
the number of hop fields (including those used only for verification, and those
used for peering links) in a segment, instead of the number of ASes which are
traversed. Its value is not changed during forwarding.

Hop Field (HF)

Hop fields contain information necessary for a border router to forward packets.
They include encoded interfaces on which a packet is forwarded, the expiration
time set by the AS, and a MAC (to authenticate the HF). A sample hop field is
presented in Figure 15.6.
0 1 2 3 4 5 6 7 15 27 39 63

C r r r r FVX ExpTime InIF EgIF MAC

Figure 15.6: Example format of a hop field.

The format of a hop field is not unified and its layout may depend on the AS;
however, the size of a hop field must always be a multiple of 8 bytes. The first
field of every hop field is a 1-byte Flags field that describes the hop field.

• C: continue/stop flag, used to encode hop fields longer than 8 bytes. If
a hop field consists of multiple 8-byte lines, then the flag is set on the
first and the last lines, to encode the beginning and the end of the hop
field accordingly (the intermediate lines have this flag set to 0). The other
flags are set only in the first line.

• r: unused and reserved for future use.
• F: forward-only flag. It is set by the AS that created the HF to indicate

that delivery of packets to the AS’s end hosts is not permitted. This flag
is set by an AS during beaconing and it is immutable (i.e., is included in
the MAC calculation and cannot be modified by end hosts).

348

15.1 SCION Packet

• V: verify-only flag. If set, it informs a router that the marked hop field is
used only for MAC verification (not used in actual packet forwarding).

• X: cross-over flag. If set, it informs a border router that the path switches
to a new path segment in this AS.

The exact meaning and interpretation of the flags in a constructed forwarding
path is described in Section 8.2.

The next field inside the HF is the ExpTime field, which denotes when a
hop field expires. The field is 1-byte long, thus there are 256 different values
available to express an expiration time. The expiration time expressed by the
value of this field is relative, and an absolute expiration time in seconds is
computed in combination with the timestamp field (from the corresponding info
field) as follows:

TS`
ˆ

p1`ExpTimeqˆ
Z

24ˆ60ˆ60
256

^˙

(15.6)

where TS is the value of the corresponding timestamp field. Hence, the minimal
lifetime of a hop field is about 5 minutes, while the maximum validity of an HF
is one day.

The following two fields, InIF and EgIF, represent ingress and egress in-
terface identifiers between which a packet should be forwarded. The length
of these fields is variable, and any encoding scheme can be implemented by
the AS. In our implementation, these fields have a length of 12 bits each. This
bounds the number of AS interfaces to 4,096.

The last item in the hop field is an authentication tag (MAC). The length of
this field is variable (in our implementation, a length of three bytes was chosen).
The AS itself can freely decide how to generate MACs and what size they
should have.

15.1.4 Extensions

The forwarding path is the last element of the SCION header, and extension
headers are placed after the path. Extensions are optional, and if they are
present, they form a chain (one extension defines the type of the next one, and
so on). The type of the first extension header is defined in the SCION common
header, and the last extension in the chain points to the layer-4 protocol (e.g.,
UDP or TCP). For packets that do not contain any extension, the NextHdr field
of the common header is set directly to the layer-4 protocol number.

SCION supports the following two classes of extension headers: (a) hop-
by-hop extensions, and (b) end-to-end extensions. Every border router has to
process hop-by-hop extensions, as do source and destination end hosts, and all
hop-by-hop extensions must be placed before end-to-end extensions. End-to-
end extensions are processed only by source and destination end hosts. The

349

15 Packet and Message Formats

number of extensions in a packet is limited only by the maximum packet length.
However, for efficiency reasons, border routers are required to process only the
first three hop-by-hop extensions.1

0 7 15 23 63

NextHdr ExtHdrLen ExtType ExtPayload

NextHdr ExtHdrLen ExtType

ExtPayload

NextHdr ExtHdrLen ExtType ExtPayload

...

Figure 15.7: An extension chain formed by the three extension headers.

An example of an extension chain is presented in Figure 15.7. NextHdr

is the first field of an extension header. It specifies the type of the extension
or protocol header that follows the extension header. Values for these fields
are chosen according to IANA’s protocol numbers [120]. For hop-by-hop
extensions, SCION uses the value 0x00 (that is the same value as IPv6’s
hop-by-hop extension) in the NextHdr field, while end-to-end extensions are
indicated by the value 0xfd.

The second byte of every SCION extension header defines the length of that
header. Extension headers have variable length, which must be a multiple of 8
bytes. The length of a given extension is computed as follows:

ExtHdrLenˆ8 (15.7)

and ExtHdrLen‰ 0, which gives 8 bytes as a minimum length, and 2,040 bytes
as a maximum. Space for an extension header must be allocated within a packet
by the source, and intermediate routers may not increase the size of extension
headers (or create additional ones).

The last common field of every SCION extension header defines the type of
extension within a given class (i.e., type within the hop-by-hop or end-to-end
extension class). The field is 1-byte long, thus it is possible to define 256
different SCION extensions per class.

SCION does not forbid multiple SCION extensions of the same class and
type to be put into a single packet. Hence, as the length of a single extension
is capped at 2,048 bytes, if necessary, an extension’s payload can be split into
multiple extension headers.

SCION by default supports the following extensions.

1An exception are SCMP packets, for which border routers may process up to four hop-by-hop
extensions.

350

15.1 SCION Packet

Path Transport Extension

The path transport extension is an end-to-end extension that allows communicat-
ing end hosts to pass or update a path. It is designed to transport a forwarding
path (i.e., a path in the data-plane format, see Section 15.1.3). The transported
path can be accompanied with a SCION address, to indicate that the end host
can be reached via another address and path to support host mobility. This
extension has a multitude of uses, for example for DoS defense, where a server
can pass a secret SCION path to the client, after the user has been authenticated
and identified as benign.

The path transport extension that conveys a path in the data-plane format (set
of info (INF) and hop (HF) fields) is depicted in Figure 15.8. The extension

Extension Type

0 7 15 23 31 63

NextHdr HdrLen 0x00 SrcType SrcAddr

SrcAddr (cont.) Padding

Path (data-plane format, var. length)

Figure 15.8: An example of a path transport extension. It is an end-to-end
extension, thus the preceding NextHdr field has value 0xfd.

contains the field SrcType, which indicates what type of SCION address the
path is prepended with. A source can inform a destination that the source is
reachable through another address via the SrcAddr field (ISD and AS identifiers
concatenated with a host address). If necessary, padding is added so that the
full path is aligned to an 8-byte boundary (Section 15.1.3 describes details of
the data-plane path format). The Path field is not mandatory and an empty
path can be sent, and through such a construction a source can indicate a new
SCION address.

One-Hop Path Extension

The one-hop path extension is a hop-by-hop extension introduced to handle
communication between two entities from neighboring ASes that do not have
a forwarding path. Currently, it is used only by beacon servers during the
beaconing process, and we present this extension in that context.

Beacons themselves are used for the creation forwarding paths, thus it is not
possible to use a forwarding path for the first packet sent. Moreover, whenever
a beacon server receives a beacon, it has to know from which ingress interface
(i.e., from which border router) the beacon was forwarded. Without such

351

15 Packet and Message Formats

information, the beacon server would not be able to create a valid hop field for
the beacon. Hence, an ingress router which forwards the beacon to the beacon
server needs to put its own interface identifier into the packet.

To enable communication in this case, the first packet sent (i.e., the TCP SYN

packet with the beacon service address specified as the destination address)
carries the one-hop path extension. This packet also has a forwarding path
where the info field and the first hop field are created by the originating beacon
server, while the second hop field is empty. The first router (i.e., an egress router
of the sender AS), simply verifies and forwards the packet to its neighbor router
(ignoring the extension), as it does for every data packet. The second router
(i.e., an ingress router of the receiver AS), detects that this packet is special
(i.e., it has the one-hop path extension and it is addressed to the beacon service),
and contributes to the forwarding path by creating the second hop field and
replacing the empty hop field in the original path. Note that the router can create
hop fields as it knows the secret key used for MAC generation/verification. A
receiving beacon server’s TCP stack removes the one-hop path extension, and
then treats the packet in a standard way, sending a SYN-ACK packet back. The
TCP stack of the sender beacon server reads the completed forwarding path
from the SYN-ACK packet. After that, an end-to-end one-hop path is known to
the two beacon servers, and can be used to communicate between them. Any
subsequent packet in the communication is sent using the created path. The
header of the one-hop path extension is presented in Figure 15.9.

Extension Type

0 7 15 23 63

NextHdr HdrLen 0x03 Padding

Figure 15.9: The header of the one-hop path extension. It is a hop-by-hop
extension, thus the preceding NextHdr field has value 0x00.

SCION Packet Security Extension

The SCION packet security extension is an end-to-end extension that allows
communicating end hosts to protect sent data on the packet level. It has a
generic design that allows encryption and/or authentication of packets via either
symmetric or asymmetric cryptography. The header of the SCION packet
security extension is presented in Figure 15.10.

The SecMode field indicates what kind of protection is applied to the packet
that carries the extension header. The content and size of the Metadata and
Authenticator fields depends on the value of the SecMode field. The meta-
data field can include information such as timestamp or sequence number (the

352

15.1 SCION Packet

Extension Type

0 7 15 23 31 63

NextHdr HdrLen 0x01 SecMode Metadata (var. length)

Authenticator (var. length)

Figure 15.10: The header of the SCION packet security extension. It is an
end-to-end extension, thus the preceding NextHdr field has value
0xfd.

field is empty when metadata are unnecessary). The size of the authenticator
field has to be aligned to a multiple of 8 bytes. Currently, we support the
following security modes (i.e., values of the SecMode field):

• AES-CMAC (0x00): MAC scheme [226] producing 16-byte authentica-
tors.

• HMAC-SHA256 (0x01): MAC scheme [136] producing 32-byte authen-
ticators.

• Ed25519 (0x02): digital signature scheme [30] with 64-byte signatures.
• GCM-AES128 (0x03): authenticated encryption scheme [76] producing

16-byte authenticators.
The metadata for all these modes is a Unix timestamp encoded as a 4-byte
unsigned integer.

The SCION packet security extension can be used for encrypted and au-
thenticated, or authenticated-only packets. However, as packets need to be
processed and modified by intermediate routers the protection has to be realized
in a special way:

• Before protecting a packet, the authenticator field is filled-in with zero-
valued bytes.

• When a packet is only authenticated (through a MAC or a digital signa-
ture), then the entire packet is protected, except: the TotalLen, HdrLen,
CurrHF, and CurrINF fields, and the sizes and payloads of hop-by-hop
extensions.

• When a packet is encrypted and authenticated, then all end-to-end ex-
tensions (excluding the SCION packet security extension itself) and the
layer-4 header with payload are encrypted, while the following are au-
thenticated: SCION Header (except TotalLen, HdrLen, CurrHF, and
CurrINF fields), types and order of all extensions, and all end-to-end
extensions. (Hop-by-hop extensions are not protected, as they can be
modified by intermediate border routers.)

353

15 Packet and Message Formats

Additionally, when the one-hop path extension is used, the second hop field
has to be set to zero before verification (as that field was modified by a border
router).

The SCION packet security extension can be used by various protocols. In
our current implementation, it is used for protecting SCMP messages (see
details in Section 4.2.5 on Page 82).

MTU Extension

The maximum transmission unit (MTU) extension is an end-to-end extension
that helps communicating end hosts to coordinate the MTU used during trans-
mission. As the MTU depends on the path used, the end hosts can pass the used
MTU for the first packet sent via a given path.

The standard procedure is as follows. The source obtains path segments,
creates a forwarding path, and learns its MTU (the relevant information is
encoded within the path segments). For the first packet sent, the effective
MTU is indicated within the MTU extension. For the responding packet, the
destination indicates its MTU only if it is smaller than the received one (e.g.,
when the destination’s LAN dictates a smaller MTU). Otherwise, the responding
packet is sent without the MTU Extension.

Extension Type

0 7 15 23 39 63

NextHdr HdrLen 0x04 MTU Padding

Figure 15.11: The header of the MTU extension. It is an end-to-end extension,
thus the preceding NextHdr field has value 0xfd.

The MTU extension can be integrated with transport protocols (such as
TCP — see Section 9.3). The header of the MTU extension is presented in
Figure 15.11.

AS-Level Anycast Extension

The AS-level anycast extension is a hop-by-hop extension that implements the
AS-level anycast service mechanism presented in Section 7.5. The goal of the
extension is to allow an anycast request to a service’s server to be sent to any
intermediate AS on a path to the core. Although the extension is hop-by-hop, it
is processed only by ingress non-core border routers on the up-path (i.e., the
forwarding path has the up direction).

The header of the extension is presented in Figure 15.12. The Flags field
is reserved for future use, the Service field specifies the service that should

354

15.2 Control Plane

Extension Type

0 7 15 23 31 47 63

NextHdr HdrLen 0x06 Flags Service Bitmask

Figure 15.12: The header of the AS-level anycast extension. It is a hop-by-hop
extension, thus the preceding NextHdr field has value 0x00.

handle the request (SCION service address), and the Bitmask field specifies the
ASes that should send the packet to the service’s server. The ASes are specified
by pointers to their corresponding hop fields. If the i-th most significant bit is
set to 1 then the hop field starting at the byte

iˆ8`offset

is set as an anycast hop field (offset is the length of the SCION common
header and the addresses of the packet). An ingress router processing the
anycast hop field tries to deliver the packet to the service’s server. If this server
does not operate, the packet is forwarded to the next AS.

SCMP Extension

SCION introduces the SCMP extension header, which is described along with
the SCMP packet format in Section 15.6.1.

15.1.5 Layer-4 Protocols

The last element of a SCION packet is the layer-4 protocol header. Each
protocol has a unique protocol number (assigned by IANA), which is encoded
either within the last extension header (if any exists), or within the SCION
common header (when a packet does not contain any extensions).

15.2 Control Plane

SCION control-plane messages are encapsulated within SCION packets, and
control-plane protocols are implemented using TCP as the default transport
protocol. There are two types of control-plane dispatching in SCION. First,
in the network layer, control-plane packets can be anycast, i.e., assigned to a
given service, and finally to an appropriate server (see details in Section 7.4.7).
Second, in the application layer a message is assigned to a given processing
logic that should be implemented by the server.

355

15 Packet and Message Formats

As described in Section 15.1.2, the service type SCION address is encoded
within 6 bytes, where the first 4 bytes are reserved for the ISD and AS pair,
and the following 2 bytes identify a given service. The most significant bit of
a service address determines whether the address is multicast (the bit is set)
or anycast. The addresses are assigned to the SCION services as presented in
Table 15.2.

Service Anycast Address Multicast Address

Beacon Service 0x0000 0x8000

Path Service 0x0001 0x8001

Certificate Service 0x0002 0x8002

SIBRA Service 0x0003 0x8003

SIG Service 0x0004 0x8004

Discovery Service 0x0005 0x8005

RAINS Service 0x0006 0x8006

Time Service 0x0007 0x8007

Table 15.2: SCION services with corresponding service addresses.

The SCION network layer is able to dispatch control-plane messages to
corresponding services, while control-plane messages are dispatched in the
application layer to corresponding processing logics. Every SCION control-
plane message starts with a 4-byte field that indicates the length of the message.
The length field is followed by an encoded payload. For the encoding we
use Cap’n Proto encoding [218], which enables language-neutral, platform-
independent, extensible, and fast data serialization. As the exact encoding is
determined by Cap’n Proto, message formats presented in this section are only
logical.

The basic message types are presented in Table 15.3, while the corresponding
control message formats are described in the rest of this chapter.

15.3 PCB and Path Segment

The format of a PCB is presented in Figure 15.13. It consists of the info
field (created by a core AS that initiated the beacon creation) and a series of
AS entries that follows the order of propagation (i.e., each AS during beacon
propagation appends one entry). Details on the path construction process are
presented in Section 7.1.

356

15.3 PCB and Path Segment

Message Type Description

Beacon Path-Segment Construction Beacon
Iface Interface state
PathSegRequest Path-segment request
PathSegReply Path-segment reply
PathSegReg Path-segment registration
PathSegSync Path-segment synchronization
PathRev Path revocation
CertRequest Certificate request
Certificate Certificate registration or reply
TRCRequest TRC request
TRC TRC registration or reply
DRKeyRequest DRKey key exchange request
DRKeyResponse DRKey key exchange response

Table 15.3: Message types in the application layer.

ASEntry1

Payload

InfoField

ASEntry0

Payload

Type

Type

Signature

Extensions

HopField

HopField

PeerEntry0

PeerEntry1

...

CertVersion
ISD

InIF EgIF InMTU
InISD InAS EgISD EgAS

PeerIF EgIF PeerMTU
PeerISD PeerAS EgISD EgAS

AS
IFSize MTU

TRCVersion

HopEntry

RevocationToken

PCB

Figure 15.13: Format of the path-segment construction beacon (PCB), color
scheme as in Section 7.1.

15.3.1 AS Entry

The AS entry is the main information appended to a beacon by every AS that
has contributed to the beacon. Figure 15.13 depicts the format of the AS entry.
It consists of metadata, a series of hop and peer entries, a revocation token,
beacon extensions, and a signature.

Each AS entry starts with its ISD and AS identifiers. Next, the TRCVersion
field informs all downstream ASes of the current version of the TRC possessed

357

15 Packet and Message Formats

by the AS that created the entry. Similarly, CertVersion denotes the AS’s
certificate version. The IFSize field describes how many bits are used to
encode the AS’s interfaces within its hop fields, while MTU states the MTU of
the AS’s internal network.

After this metadata, the list of entries that specify routing decisions start.
There are two types of entries, and they have the same structure. The first entry
is interpreted as a Hop Entry. This entry carries routing information required
to forward packets between an ingress interface (connecting to a parent AS),
and an egress interface (connecting to a child AS). All other entries within
an AS entry are called Peer Entries and they are optional. Every peer entry
carries routing information needed to forward packets between a peer interface
(connecting to a peer AS) and an egress interface (connecting to a child AS).
The structure of the entries is presented in Figure 15.13, and their details are
described in the following section.

AS entries include also the RevocationToken field (details on the revoca-
tion mechanism are presented in Section 7.3) and beacon extensions. Extensions
are optional, and every AS can specify multiple extensions. Details on beacon
extensions are presented in Section 15.3.4. The last element of every AS entry
is the signature field, which an AS fills in with a signature created over the
entire beacon (see Equation 7.4).

15.3.2 Hop and Peer Entry

Hop and peer entry fields have a similar format, which is depicted in Fig-
ure 15.13. A hop entry starts with ISD and AS identifiers of the ingress, in the
direction of the propagation, AS (i.e., the AS of the previous AS entry). Then,
ISD and AS identifiers of the egress AS are present (i.e., the AS of the next
AS entry). The next two fields of the hop entry are identifiers of ingress and
egress interfaces used by the ingress and egress ASes accordingly. The hop
entry also contains the InMTU field, which describes the MTU of the ingress
interface. The last element of the hop entry is the hop field, which is used for
building the full data-plane path, and forwarding traffic between ingress and
egress interfaces of the AS (interfaces are specified within the hop field). Note
that interface identifiers of the hop field can be determined through the IFSize
field of the AS entry. Using this field, end hosts can use paths at interface-level
granularity (i.e., end hosts can determine which interfaces a packet traverses).

Peer entries have a similar format; however ISD and AS identifiers identify
a peer AS of the AS that created the entry, the interface identifiers fields are
assigned to the peer and egress interface, and the PeerMTU field denotes the
MTU of the peering link. The hop field allows forwarding of traffic between
peer and egress interfaces. Peer entries are optional for intra-ISD beacons and
are not valid in core beacons.

358

15.3 PCB and Path Segment

15.3.3 Revocation Token

The RevocationToken field contains the information that allows authenti-
cation of revocation messages issued by this AS (details of the revocation
mechanism are presented in Section 7.3). More specifically, it contains a de-
scriptor of the hash algorithm used, and a root value of the revocation hash tree.
The root is required to verify whether a revocation message is authentic (an
example revocation message is presented in Figure 15.18 on Page 362).

15.3.4 Beacon Extensions

Beacons have their own extension mechanism as depicted in Figure 15.13.
Beacon extensions are optional and are placed at the end of a beacon just before
the signature field. Every AS entry can have multiple extensions, and each
beacon extension starts with its Type encoded within 1 byte. The rest of an
extension is its payload. Every extension is signed by the AS that created it, to
protect its integrity. However, extensions can have unprotected fields that are
not covered by the signature.

Announcement Extension

New ISDs must be announced in advance by their neighbors through a beacon
extension (see Chapter 5). An announcement extension is presented in Fig-
ure 15.14. It contains the first TRC (version 0) of the newcomer with the TRC’s
quarantine flag set to true or false depending on whether the extension consti-
tutes an early announcement or a final announcement. This field is optional, but
the extension also contains an identifier of a hash algorithm and the hash of the
TRC (these fields are mandatory). Each ISD is limited to making at most five
early announcements at any point in time. The TRC field is not included in the
signature calculation, although it is mandatory for PCBs (core ASes learn about
new ISDs through PCBs). When a PCB, with an announcement extension, is
transformed into a path segment (see Section 15.3.6), the TRC field is removed
(this is done for efficiency reasons, to avoid sending large TRCs during the path
lookup process).

HashAlg

Hash (of the TRC)

TRC (optional)

Figure 15.14: Format of announcement extensions.

359

15 Packet and Message Formats

Routing Policy Extension

A routing policy extension enables an AS to specify which ASes can (or cannot)
use a beacon as a path segment. This mechanism allows expression of some
source-based routing policies (see Section 10.9.2 on Page 232). The extension
allows the permission to be set for either an entire beacon or an interface
included in the beacon:

• If an AS is not permitted to use a beacon, the AS is not allowed to register
the beacon as a path segment with the core ASes (a core path server has
to reject such a registration), hence the path segment is not visible to
other ASes.

• If an AS is not permitted to use an interface, the AS still can register
the beacon as a path segment, however forwarding packets through the
forbidden interface can be disabled for this AS (the border router can just
sample and drop packets).

ALLOW AS

DENY AS

ALLOW IF

DENY IF

Type IF (opt.) ISD0 AS0 ISD1 AS1 ISD2 AS2
. . .

Figure 15.15: Format of routing policy extensions.

The format of a routing policy extension in presented in Figure 15.15. It lists
ASes whitelisted or blacklisted to use the interface or the entire beacon as a
path segment. Since this extension is signed, policy integrity is achieved.

15.3.5 Signature

The last field of a PCB is the signature. The signature is calculated over the
entire PCB, as presented in Equation (7.4) on Page 121. The signing algorithm
and the public key required to verify the given signature are indicated by the
AS’s certificate, which in turn is determined through the CertVersion field
(see Figure 15.13).

15.3.6 Path Segments

Path segments are complete SCION paths containing all metadata required to
build forwarding paths. They are registered with path servers and fetched by
end hosts. Path segments use the same format as path-segment construction
beacons, and the only changes are that: (a) unprotected fields of extensions are
discarded, and (b) the last AS entry terminates the path (setting egress ISD, AS,

360

15.4 Path Management Messages

and interface identifiers to zeros). To turn a PCB into a path segment, an AS
conducts the following (note that this AS must be the last AS specified within
this PCB):

1. Remove all unprotected fields of the PCB’s extensions.
2. Add the new AS entry, which is also a termination entry (i.e., the PCB

with this entry cannot be extended anymore).
3. Sign the PCB via the AS’s private key, and set the signature field of the

AS’s (i.e., the last) AS entry.

15.4 Path Management Messages

There are several types of path management messages. Table 15.3 on Page 357
defines the different path management types. These types are encoded by three
different message formats, which we explain in this section.

The format of a path request is depicted in Figure 15.16. It contains source
ISD and AS identifiers, and destination ISD and AS identifiers. Through
these values a requester requests a set of path segments from the source to the
destination AS. The requester can specify the empty destination AS (i.e., AS
identifier equals zero), which denotes a request for a path to any core AS within
the destination ISD. The request messages contain the CacheOnly flag field. If
the flag is set then only the responder’s local cache is used to find requested
path(s).

SrcISD SrcAS DstISD DstAS CacheOnly

Figure 15.16: Format of path request messages.

Path segments are encapsulated within a message that follows the structure
from Figure 15.17. This message format is used in the following three cases:

• path replies (from a path server to a requester),
• path registrations (from a beacon server to a path server),
• path synchronization (between path servers from the same AS).

Payloads of these messages consist of a list of path segments, where every path
segment is prepended with a field that represents the type of the path segment
(type can be one of UP, DOWN, or CORE).

The final message format is used to propagate path revocation information
among end hosts and the path infrastructure. The format of the message is
presented in Figure 15.18. The revocation message consists of the ISD and AS
identifier of the revocation message issuer, revoked interface identifier (IF),
time period in which the interface is considered to be revoked (Epoch), and
other fields (Nonce, Proof, PrevRoot, and NextRoot) that together prove that

361

15 Packet and Message Formats

UP

DOWN

CORE

SegType0

PathSegment0
...

SegType1

PathSegment1
...

SegType2

PathSegment2
...

Figure 15.17: Format of path reply, registration, and synchronization messages.

the revocation is correct. Authenticity of the revocation message is verified
against a revocation token contained in the path segment (see Section 15.3.3).
The message also specifies a hash algorithm used to construct and verify the
proof. The details of the SCION path revocation mechanism are described in
Section 7.3.

HashAlg ISD AS

IF Epoch

Nonce

Proof
...

PrevRoot

NextRoot

Figure 15.18: Format of path revocation messages.

15.5 PKI Interactions

To interact with the control-plane PKI, SCION provides the following message
formats.

The format of a certificate request message is depicted in Figure 15.19. It
consists of ISD and AS identifiers and the certificate version field, which a

362

15.6 SCMP Packet

requester specifies to ask for a given certificate. By setting the version field to
null, the requester asks for the most recent certificate.

ISD AS CertVersion CacheOnly

Figure 15.19: Format of certificate request messages.

Similarly, the format of a TRC request message (presented in Figure 15.20)
includes an ISD identifier and the requested TRC version. Again, a version
field set to null is used to request the most recent TRC.

ISD TRCVersion CacheOnly

Figure 15.20: Format of TRC request messages.

Request messages contain the CacheOnly flag field. If the flag is set then
only the responder’s local cache is used to find a requested certificate/TRC
(without contacting any remote server).

Replies to these requests contain only the requested certificate or TRC.

15.6 SCMP Packet

15.6.1 SCMP Extension Header

Each SCMP packet contains a mandatory hop-by-hop SCMP extension header.
For efficiency reasons, the header is always the first extension header, however
it does not count towards the limit of hop-by-hop extensions, so that a packet
that is received with the maximum number of hop-by-hop extensions can still
be replied to. By having SCMP as the first extension, any router on the path
can efficiently check whether a packet is an SCMP packet (i.e., routers find it
from the common header’s NextHdr field).

Extension Type

0 7 15 23 24 25 26 27 28 29 30 31 63

NextHdr HdrLen 0x02 r r r r r r HE Padding

Figure 15.21: The header of the SCMP extension. It is a hop-by-hop extension,
thus the preceding NextHdr field has value 0x00.

The extension header is depicted in Figure 15.21. It contains a single byte
encoding the following flags:

• H: hop-by-hop flag, set if this is a hop-by-hop SCMP message.
• E: error flag, set if this is an SCMP error packet.

363

15 Packet and Message Formats

• r: unused bit, reserved for future use.
The hop-by-hop flag tells the router on the path whether or not it needs to

process the layer-4 header and payload of the SCMP packet. In both cases the
router can make the decision only after processing the first extension header
(which it can jump to directly through the HdrLen field in the common header).

The error flag indicates whether the SCMP message should be treated as an
error. Depending on the type of a basic error that happens while parsing the
packet, a router might not be able to reliably read the extension header, in which
case it will treat all SCMP packets as if they were SCMP error packets. SCMP
error packets must never generate SCMP error packets. This simple safeguard
ensures that packet storms do not occur.

15.6.2 SCMP Layer-4 Header

An SCMP packet layout is presented in Figure 15.22. Each packet consists of
an SCMP Header and SCMP Payload.

0 7 15 23 31 39 47 55 63

Class Type Length Checksum

Timestamp

SCMP
header

{

InfoLen CmnHLen AddrLen PathLen ExtsLen L4Len L4Proto Padding
} Payload

metadata

InfoBlock (var. length)

DataBlock (var. length)

SCMP
payload





Figure 15.22: The layout of an SCMP packet.

SCMP Header

The SCMP header is presented in Figure 15.22. It contains the following fields:
• Class: SCMP message category.
• Type: SCMP message subcategory.
• Length: length (in bytes) of the SCMP header and SCMP payload.
• Timestamp: time when the SCMP header was generated. Time is ex-

pressed in microseconds since the Unix epoch.
• Checksum: Internet-style checksum [41] over the SCION address header,

layer-4 protocol type, SCMP layer-4 header, and SCMP payload.
The classes and types of SCMP messages are described in Section 15.6.3.

364

15.6 SCMP Packet

SCMP Payload

The payload contains all the context required to interpret a message of the class
and the type specified in the SCMP header. It has three parts (see Figure 15.22):
Payload Metadata (mandatory field, 8 bytes), Info Block (optional field, variable
length), Data Block (optional field, variable length).

The payload metadata field contains a series of length fields that describe the
lengths of the relevant blocks (info block and data block, which can contain:
quoted SCION common header, quoted address header, quoted path header,
quoted extension headers, quoted layer-4 header). A length of zero means that
the field is not present. The L4Proto field is the protocol number of the quoted
layer-4 header, if it exists, and zero if it does not.

The class and type of the SCMP message defines the type of the info block,
and which (if any) quoted blocks are present in the data block. The info block
contains any additional information required to process the SCMP payload.
The various classes and types, along with which info blocks and which quoted
blocks are required are described in the next section.

15.6.3 Message Classes and Types

Below, we present classes and types of SCMP messages with their descriptions.

• GENERAL (0x00): General SCMP errors and echo request/replies.
– UNSPECIFIED (0x00): Error that does not fall into any other

category. Only to be used until a more specific error code can
be allocated. InfoBlock includes: string describing the error.
DataBlock includes: all headers.

– ECHO REQUEST (0x01): Echo request. InfoBlock includes:
identifier (randomly generated per source app), sequence identifier
(incremented for each packet). DataBlock can be user-supplied,
set to a sequential byte string by default.

– ECHO REPLY (0x02): Echo reply. InfoBlock and DataBlock

are copied from the request message.
– TRACEROUTE REQUEST (0x03): Traceroute request. Info-
Block includes: identifier (randomly generated per source app).
Traceroute request is sent towards destination and every border
router on the path detects it, generates a reply (see below), and
forwards to the next hop.

– TRACEROUTE REPLY (0x04): Traceroute reply. InfoBlock
is copied from the request message. DataBlock includes: interface
identifier of the router that generated the reply.

365

15 Packet and Message Formats

• FORWARDING (0x01): SCMP forwarding and delivery errors. For
each type, the DataBlock consists of quoted: common header, address
header, and layer-4 header (if exists).

– UNREACH NET (0x00): Destination network unreachable: a
layer-2 error, when there is no route to the destination host’s net-
work.

– UNREACH HOST (0x01): Destination host unreachable: a layer-
2 error (e.g., the current machine is on the same segment as the
destination host, and gets no response from it).

– L2 ERROR (0x02): Layer-2 error not covered by other error types
(e.g., TTL exceeded). InfoBlock includes: layer-2 error code(s).

– UNREACH PROTO (0x03): Destination host does not support
the requested layer-4 protocol.

– UNREACH PORT (0x04): Destination host unable to parse layer-
4 port number.

– UNKNOWN HOST (0x05): Destination host unknown (e.g., the
destination address is an SVC address, for which the router cannot
retrieve any service instances).

– BAD HOST (0x06): Destination host is invalid (e.g., the destina-
tion address is an unsupported SVC address).

– OVERSIZE PKT (0x07): Packet size is larger than MTU. Info-
Block includes: packet size and MTU.

– ADMIN DENIED (0x08): Communication with destination host
administratively denied.

• SCION COMMON HEADER (0x02): SCION common header errors.
For each type, the DataBlock consists of quoted: common header, ad-
dress header, and layer-4 header (if exists).

– BAD VERSION (0x00): Invalid SCION version. (e.g., the SCION
version is deprecated). Only versions that are known but not allowed
are signaled, as with an unknown version the packet then cannot be
processed.

– BAD DST TYPE (0x01): Invalid destination address type. (e.g.,
the address type is deprecated). Only types that are known but
not allowed are signaled, as with an unknown type the packet then
cannot be processed.

– BAD SRC TYPE (0x02): Invalid source address type. (e.g., the
address type is deprecated). Only types that are known but not
allowed are signaled, as with an unknown type the packet then
cannot be processed.

366

15.6 SCMP Packet

– BAD PKT LEN (0x03): TotalLen field in common header does
not match the number of bytes received. InfoBlock includes:
received bytes in packet.

– BAD IOF OFFSET (0x04): Invalid CurrINF offset in common
header (e.g., offset is non-zero for an empty path).

– BAD HOF OFFSET (0x05): Invalid CurrHF offset in common
header (e.g., offset is non-zero for an empty path).

• PATH (0x03): Forwarding-path-processing errors. For each type, the
DataBlock consists of quoted: common header, address header, layer-4
header (if exists), and path (except the first type).

– PATH REQUIRED (0x00): Packet cannot be routed as it has no
path.

– BAD MAC (0x01): MAC verification failed. InfoBlock includes:
CurrINF, CurrHF.

– EXPIRED HOF (0x02): Hop field expired. InfoBlock includes:
CurrINF, CurrHF.

– BAD IF (0x03): Invalid interface ID in HF. InfoBlock includes:
CurrINF, CurrHF, direction flag.

– REVOKED IF (0x04): Revoked interface in path. InfoBlock

includes: CurrINF, CurrHF, direction flag, revocation info.
– NON FORWARD HOF (0x05): Current HF not valid for for-

warding. (e.g., HF has the verify-only flag set). InfoBlock in-
cludes: CurrINF, CurrHF.

– DELIVERY FWD ONLY (0x06): Delivery disallowed by the
HF’s forward-only flag. InfoBlock includes: CurrINF, CurrHF.

– DELIVERY NON LOCAL (0x07): Delivery disallowed as desti-
nation is not local. InfoBlock includes: CurrINF, CurrHF.

• EXTENSION (0x04): SCION-extension-processing errors. For each
type the InfoBlock includes the extensions index, while the DataBlock
consists of quoted: common header, address header, layer-4 header (if
exists), and extension headers.

– TOO MANY HOPBYHOP (0x00): Too many hop-by-hop exten-
sions.

– BAD EXT ORDER (0x01): Invalid extension order. (e.g., SCMP
extension is not the first one).

– BAD HOPBYHOP (0x02): Unsupported hop-by-hop extension.
– BAD END2END (0x03): Unsupported end-to-end extension.

• SIBRA (0x05): SIBRA errors. For each type, the DataBlock consists
of quoted: common header, address header, layer-4 header (if exists), and

367

15 Packet and Message Formats

the SIBRA extension header. (In a future release of SCION we plan to
add more SIBRA SCMP error types.)

– SIBRA BAD VERSION (0x00): Unsupported SIBRA version.
– SIBRA SETUP NO REQ (0x01): Request flag not set in the

setup packet.

368

16 Configuration File Formats

TOBIAS KLAUSMANN, STEPHEN SHIRLEY, PAWEL SZALACHOWSKI

This chapter describes the details of SCION configuration files. All SCION
configuration files are represented in JSON [42] format.

Chapter Contents

16.1 Trust Root Configuration . 369

16.2 AS Certificates . 370

16.3 Discovery Service Configuration 374

16.4 Router, Server, and End-Host Configuration 376

16.1 Trust Root Configuration (TRC)

The TRC format is introduced in Section 4.2.1. This section provides a more
detailed description of its structure. Every TRC consists of the following fields:

• ISD: ISD identifier as an integer from 1 to 4095.
• Description: human-readable description of an ISD.
• Version: version number of the TRC. An ISD assigns a consecutive

version number (nonnegative integer) to every new TRC.
• CreationTime: Unix timestamp (integer) that expresses when the TRC

was created.
• ExpirationTime: Unix timestamp (integer) that expresses when the

TRC expires.
• CoreASes: dictionary of core ASes and their online and offline public

keys (see Section 4.2.2). The keys are represented by Base64-encoded
strings, and for each key a digital signature scheme is indicated.

• RootCAs: dictionary of root CAs and their public-key certificates. Cer-
tificates are implemented in the X.509v3 format [60] (as today), and

369

16 Configuration File Formats

represented in the DER format [119] encoded as a Base64 string. Each
CA has also an associated online key used for signing TRCs of remote
ISDs (the key is encoded in the same format as AS online keys), and a list
of servers that handle TRC signing requests. Additionally, CAs specify
keys and addresses of their ARPKI services.

• CertLogs: dictionary of end-entity certificate logs, and their addresses
and public-key certificates (see details in Section 4.4). Certificates are
implemented in the X.509v3 format, and represented in the DER format
encoded as a Base64 string.

• ThresholdEEPKI: threshold number (nonnegative integer) of trusted
parties (CAs and one log) that have to assert a domain’s policy (see
details in Section 4.4).

• RAINS: RAINS root public key (encoded as a Base64 string) and an
online key used for signing TRCs of remote ISDs (the key has the same
format as AS online keys). This section also includes a list of servers that
handle TRC signing requests.

• QuorumTRC: quorum (i.e., threshold number, nonnegative integer) of core
ASes that must sign a new TRC.

• QuorumCAs: quorum of root CAs required to change RootCAs, CertLogs,
ThresholdEEPKI, and QuorumCAs.

• GracePeriod: period during which the TRC is valid after the creation
time of a new TRC.

• Quarantine: Boolean flag defining whether the TRC is valid (quaran-
tine = false) or an early announcement (quarantine = true). See
Chapter 5 for more details.

• Signatures: dictionary of signatures of trust roots (core ASes, root
CAs, and naming roots). This section also contains cross-signatures.
The signatures are computed over the TRC, and are encoded as Base64
strings.

An example of the TRC is presented in Figure 16.1.

16.2 AS Certificates

Certificates are used to prove ownership of a public key. SCION employs
certificates for routing, name, and entity authentication, and details of certificate
management are given in Chapter 4. For end-entity authentication, standard
TLS certificates (i.e., X.509v3 format [60]) are used, for name authentication
DNSSEC’s resource records [213] are deployed, while for routing authentica-
tion SCION proposes the following simple certificate format.

• Subject: string representing the entity that owns the certificate and the
corresponding key pair. An AS is represented as a string ISD-AS.

370

16.2 AS Certificates

{"ISD": 1,
"Description": "The first (test) ISD",
"Version": 2,
"CreationTime": 1480927723,
"ExpirationTime": 1483927723,
"CoreASes": {
"1-10": {"OnlineKeyAlg": "ed25519", "OfflineKeyAlg": "ed25519",

"OnlineKey": "vDlNRHdRI4TZrdhfKn2MgV5A1ewoDv6h4osFdylEyCQ=",
"OfflineKey": "S29jaGFtIEhlbmlhIGkgUGF1bGlua2UuIFBhd2VsLiA="},

"1-11": {"OnlineKeyAlg": "ed25519", "OfflineKeyAlg": "ed25519",
"OnlineKey": "5n33hhBRT86/lS6L0Oh0RUWweYranrnLkD8uqLzArB4=",
"OfflineKey": "k0ScqpNRFMsal54sjlgbFxENWJq6ofdPOiazjiK9ta0="},

"1-12": {"OnlineKeyAlg": "ed25519", "OfflineKeyAlg": "ed25519",
"OnlineKey": "tuJOOW5bNrlzhoyohdifXo70Zc8zFl4nFy0T4JlgP1I=",
"OfflineKey": "VYDONHZjckKqXHgprT9zmrDwGhL5dElakxNsGuxnd5I="},

"1-13": {"OnlineKeyAlg": "ed25519", "OfflineKeyAlg": "ed25519",
"OnlineKey": "cXRYKtY/L18KHs4dt8G6e4itodFhhj7f3LvBS5xo3as=",
"OfflineKey": "wUw9f9wFov/kWykV/T94lJu6dfJ2aeQDOtzmnIbo32E="}},

"RootCAs": {
"VeriSign Class 3": {"Certificate": "MIID30wDQYJKoZIhvcNAQELBQA...",

"OnlineKeyAlg": "ed25519", "OnlineKey": "F4tLPPhdEygoXidQK...",
"TRCSrv": ["1-10 43.0.0.10"], "ARPKISrv": ["1-10 43.0.1.23"],
"ARPKIKey": "LmvksbZlvZxYWv4qLusOGY..."},

"GeoTrust Global CA": {"Certificate": "MIID1jCCAr6gAwIBAgIIUuuzQL...",
"OnlineKeyAlg": "ed25519", "OnlineKey": "pW2wH8DzCRVw2KGH4...",
"TRCSrv": ["1-21 1.23.117.88"], "ARPKISrv": ["1-21 1.23.119.8"],
"ARPKIKey": "Pilk7MYtx5mow4VZEY2Nww..."},

"DigiCert Root CA": {"Certificate": "MIIE0zCCA7ugAwIBAgIQGNrRni...",
"OnlineKeyAlg": "ed25519", "OnlineKey": "uppd7OMBMQGGHrNAk...",
"TRCSrv": ["1-98 83.13.1.19"], "ARPKISrv": ["1-98 33.13.19.18"],
"ARPKIKey": "/NI04nIa/3pBu/dlEv9rIe..."}},

"CertLogs": {
"ISD 1, Log1": {"1-11 1.1.2.3": "MIIH0zCCBbugAwI..."},
"ISD 1, Log2": {"1-13 3.0.8.7": "MIIDbTCCAlWgAwI..."}},

"ThresholdEEPKI": 3,
"RAINS": {"RootRAINSKey": "fQRbxC1lfznQgUy286dUV4otp6F01vvpX1FQHKOt...",

"OnlineKeyAlg": "ed25519", "OnlineKey": "VAsCtoEndLXAPtXVX...",
"TRCSrv": ["1-5 13.3.33.210", "1-12 8.8.8.8"]},

"QuorumTRC": 2,
"QuorumCAs": 2,
"GracePeriod": 18000,
"Quarantine": false,
"Signatures": {
"1-11": "zQrFoqqaNfG62X5OyyraF8kQok4Ehh3POHooGemX+UwvhxhZnydw...",
"1-12": "7DEAyG1ldO3jQqems22y9RZmD87VgBnbcvR7YxRIq58eLDkekV20...",
"1-13": "D+Eg1O++oGfqKVXB/bxufdz5GbXY5CTQFGQbOSJCP07c8ebb3SzK...",
"2-1": "ufTuR26sWp53MHu5suyQuChxWhWQM7gmgkLKJJIl2KJPAdK98Ki8a...",
"ISD 2, RAINS": "2BwAtQ4mG9rdnpo1VGVIj96f/Ueq1TNgdXPI9YSlEREm...",
"ISD 2, CA: TestCA": "ZO9NkrvTJ/Vec8X5T9ja1IV+o2xvhTQ6FZatnsO..."}}

Figure 16.1: Example of a TRC.

371

16 Configuration File Formats

• Issuer: string identifying the entity that verified the binding between
the public key and the subject entity. The issuer is the entity that signed
the certificate. An AS is represented as a string ISD-AS.

• TRCVersion: version of the TRC that the issuer used at the time of
signing the certificate.

• Version: version of the certificate. It has to be a unique (per subject)
nonnegative integer.

• Comment: arbitrary and optional string used by the subject to describe
the certificate.

• CanIssue: Boolean that describes whether the subject is allowed to issue
certificates for other ASes.

• IssuingTime: point in time when the certificate was created (time is
expressed as a Unix timestamp).

• ExpirationTime: expiration time of the certificate (Unix timestamp).
• EncAlgorithm: cryptographic algorithm that must be used to encryp-

t/decrypt a message with the subject’s public/private key. An encryption
algorithm is determined by a predefined string, and the list of supported
algorithms is presented in Section 17.1.2.

• SubjectEncKey: subject’s encryption key, encoded in Base64.
• SignAlgorithm: cryptographic algorithm that must be used to sign/ver-

ify a message with the subject’s private/public key. A signing algorithm
is determined by a predefined string, and the list of supported algorithms
is presented in Section 17.1.2.

• SubjectSignKey: subject’s signature key, encoded in Base64.
• Signature: issuer’s signature over the certificate. The signature is

encoded in Base64.

{"Subject": "1-16",
"Issuer": "1-13",
"TRCVersion": 2,
"Version": 0,
"Comment": "AS certificate",
"CanIssue": false,
"IssuingTime": 1480927723,
"ExpirationTime": 1512463723,
"EncAlgorithm": "curve25519xsalsa20poly1305",
"SubjectEncKey": "Gfnet1MzpHGb3aUzbZQga+c44H+YNA6QM7b5p00dQkY=",
"SignAlgorithm": "ed25519",
"SubjectSignKey": "TqL566mz2H+uslHYoAYBhQeNlyxUq25gsmx38JHK8XA=",
"Signature": "IdI4DeNqwa5TPkYwIeBDk3xN36O5EJ/837mYyND1JcfwIOumhBK..."}

Figure 16.2: Example of an AS certificate.

372

16.2 AS Certificates

An example certificate is presented in Figure 16.2. A private key that corre-
sponds to the certificate’s public key is encoded using Base64, and is stored as
a single-line file.

A certificate chain is constructed as a simple concatenation of certificates,
delimited by the numbers that order certificates in the chain. An example of
a certificate chain that uses the presented certificate format is presented in
Figure 16.3. The first certificate is a leaf certificate, and every subsequent
certificate is signed by an owner (i.e., subject) of the next certificate. The last
certificate is a self-signed (i.e., root) certificate. However, as presented in the
example, it is allowed to exclude a root certificate from a chain, as an entity
that validates the certificate chain is supposed to store correct root certificates
in a corresponding TRC.

{"1":
{"Subject": "1-16",
"Issuer": "1-13",
"TRCVersion": 2,
"Version": 0,
"Comment": "AS certificate",
"CanIssue": false,
"IssuingTime": 1480927723,
"ExpirationTime": 1512463723,
"EncAlgorithm": "curve25519xsalsa20poly1305",
"SubjectEncKey": "Gfnet1MzpHGb3aUzbZQga+c44H+YNA6QM7b5p00dQkY=",
"SignAlgorithm": "ed25519",
"SubjectSigKey": "TqL566mz2H+uslHYoAYBhQeNlyxUq25gsmx38JHK8XA=",
"Signature": "IdI4DeNqwa5TPkYwIeBDk3xN36O5EJ/837mYyND1JcfwIOumhBK..."},
"2":
{"Subject": "1-13",
"Issuer": "1-13",
"TRCVersion": 2,
"Version": 6,
"Comment": "Core AS certificate",
"CanIssue": true,
"IssuingTime": 1442862832,
"ExpirationTime": 1582463723,
"EncAlgorithm": "curve25519xsalsa20poly1305",
"SubjectEncKey": " Z8Kd0FTxwrPJtODRKFHtFJ5xAJejvpylHSYMbzaEbPQ=",
"SignAlgorithm": "ed25519",
"SubjectSigKey": " SKx1bhe3mh4Wl3eZ1ZsK1MwZwsSfcwvyn4FSI9yTvDs=",
"Signature": "kKzkmxSszVGAHnjPfk8wo/hPSHgBIh8J5nHPXt+aCrnQi1SHeF2..."}}

Figure 16.3: Example of a certificate chain.

373

16 Configuration File Formats

16.3 Discovery Service Configuration

Service discovery (described in Section 7.4.6) provides configuration files that
are a central element of an AS’s configuration. Although not all end hosts
and servers of an AS receive all information from the AS’s discovery service
configuration file, some parts of it are necessary to enable operation of the
control plane and data plane within an AS. A configuration file consists of the
following fields:

• ISD AS: ISD and AS identifiers in the “ISD-AS” format, where ISD is an
integer from 1 to 4,095, and AS is an integer from 1 to 1,048,575.

• MTU: integer that describes (in bytes) the maximum transmission unit
within the AS.

• Overlay: overlay protocol used within the AS to implement SCION. It
can be one of the following:

– IPv4: denotes an IPv4 overlay (i.e., SCION endpoints must have
IPv4 addresses assigned).

– IPv6: denotes an IPv6 overlay (i.e., SCION endpoints must have
IPv6 addresses assigned).

– IPv4+6: denotes that IPv4 and IPv6 overlays are deployed (i.e.,
SCION endpoints must have IPv4 and IPv6 addresses assigned).

– UDP/IPv4: denotes a UDP/IPv4 overlay (i.e., SCION endpoints
must have IPv4 addresses assigned and must listen on a pre-defined
overlay UDP port).

– UDP/IPv6: denotes a UDP/IPv6 overlay (i.e., SCION endpoints
must have IPv6 addresses assigned and must listen on a pre-defined
overlay UDP port).

– UDP/IPv4+6: denotes that UDP/IPv4 and UDP/IPv6 overlays are
deployed (i.e., SCION endpoints must have IPv4 and IPv6 addresses
assigned and must listen on a pre-defined overlay UDP port).

– MPLS: denotes an MPLS overlay (i.e., SCION endpoints must have
MPLS labels assigned).

• BorderRouters: dictionary of router identifiers (arbitrary unique strings),
and their local end-host addresses with an interface configuration. Each
router’s section can have an optional list (InternalAddrs) of its inter-
nally used addresses (i.e., addresses used when addressing the router
itself, not for forwarding). An entry of the list contains an address
(IPv4/IPv6 address or MPLS label) accompanied with the port.
The next dictionary (Interfaces) specifies information about interfaces
that the router supports (an interface connects with a border router of
a neighboring AS). Each interface has assigned an interface identifier

374

16.3 Discovery Service Configuration

(positive integer) which must be unique within the AS. An interface
configuration consists of the following:

– InternalAddrIdx: index of the InternalAddrs list, which spec-
ifies the internal address of the router. This address is used for
receiving local traffic (i.e., from the local AS).

– Overlay: overlay protocol used to communicate with a neighbor
AS’s border router. It can be IPv4, IPv6, UDP/IPv4, UDP/IPv6,
or MPLS.

– Bind: address (and optionally port — if UDP encapsulation is used)
that the router binds to.

– Public: address (and optionally port) used for receiving remote
traffic (i.e., from a neighbor AS’s border router).

– Remote: address (and optionally port) used by a neighbor AS’s
border router to receive traffic from the local AS.

– Bandwidth: integer that describes bandwidth (in bits per second)
of the interface.

– ISD AS: ISD and AS identifiers of the neighbor AS in the “ISD-AS”
format.

– LinkType: type of relation between local and neighbor ASes. The
value of this field can be PARENT, CHILD, PEER, or CORE (if both
ASes are core ASes).

– MTU: integer that describes (in bytes) the maximum transmission
unit of the interface.

• ConsistencyService: dictionary of consistency server identifiers (ar-
bitrary unique strings), and their local (end-host) addresses. In our imple-
mentation, the consistency service is implemented with ZooKeeper [11],
but this field is implementation-specific.

• BeaconService: dictionary of beacon server identifiers (arbitrary unique
strings), and their address(es).

• CertService: dictionary of certificate server identifiers (arbitrary unique
strings), and their addresses.

• PathService: dictionary of path server identifiers (arbitrary unique
strings), and their addresses.

• SibraService: dictionary of SIBRA server identifiers (arbitrary unique
strings), and their addresses.

• RAINSService: dictionary of RAINS server identifiers (arbitrary unique
strings), and their addresses.

Addresses of servers can be specified within the two following sections. Each
entity must have a Public address section, which is used by

• the entity as the source address for messages it sends, and

375

16 Configuration File Formats

• all other entities as the destination address for packets sent to that entity.
A Bind section is optional. If specified, it contains the address(es) that the

entity binds to. This is used in the case of NAT (a Bind section means that the
entity will not bind to any addresses that are only listed in the Public section).
Note that the address sections of servers can contain multiple addresses (in
contrast to a router’s interface address sections).

If multiple SCION entities are behind a legacy NAT device, then Overlay-

Port should be specified in the Public section for each of them, and that port
forwarded by the NAT device to the private address the entity runs on. (Note
that this configuration only works if a UDP-based overlay is deployed within
the AS.) If the NAT device is SCION-aware, then this is not needed, as the
SCION-NAT dispatcher can forward incoming packets appropriately, and the
overlay type does not matter.

Each address entry must contain Addr and L4Port fields. OverlayPort

is optional (and only relevant if the UDP overlay is used), and typically only
needed when running services behind a legacy NAT device as described above.
If OverlayPort is not specified, then the default dispatcher port is used.

An example of a discovery service configuration file is presented in Fig-
ure 16.4. We emphasize that an AS can restrict visibility of some parts of the
configuration file to some entities. For instance, end hosts do not need to know
beacon servers or detailed border router interface information.

16.4 Router, Server, and End-Host Configuration

In this section, we describe how SCION infrastructure elements are configured
and initialized.

Discovery Server

A discovery server needs an AS static configuration file that includes informa-
tion on all SCION servers and border routers existing in the AS. As described
in Section 7.4.6, the discovery service provides both static and dynamically
generated information on the SCION services within its AS.

Since some of the information presented in the dynamic view cannot be
learned from the consistency service, the values from the static configuration
are mixed into the dynamic view. For example, the border routers do not
register with the consistency service, and thus, information about them needs to
be learned from the static configuration.

376

16.4 Router, Server, and End-Host Configuration

Border Router

In order to operate, a SCION border router requires the addresses of the local
AS discovery servers, the AS’s static configuration file (optionally), and a
symmetric key used for hop-field verification. Distribution of symmetric keys
within an AS is up to the AS. In particular, the AS can distribute a master key,
which is then used to derive other keys, such as a hop-field creation/verification
key or keys used in extensions (e.g., SIBRA or OPT).

Beacon Server

On startup, a beacon server must be provided with the addresses of the local
AS discovery servers, the AS’s static configuration file (optionally), a TRC (see
Section 16.1), the AS’s certificate (see Section 16.2), and a private key corre-
sponding to the certificate (Section 16.2). The beacon server can additionally
be given certificates of upstream ASes, older TRCs, or TRCs of other ISDs.
To operate properly, beacon servers are also configured with the following
parameters:

• Hop-field key: symmetric key used to authenticate hop fields. (The same
key has to be used by border routers to verify hop-field MACs.)

• Propagation period: denotes how often a beacon server initiates path-
segment construction beacon propagation.

• Registration period: describes the frequency of path-segment registra-
tion. Registration periods are configurable per path-segment type (i.e.,
up, down, or core).

• Beaconing policy: applied when a beacon server selects beacons for
propagation. Details of the selection process are described in Sec-
tion 7.1.4.

• Registration policy: applied when a beacon server selects beacons for
up-, down-, or core-segment registration (each path-segment type has its
own policy).

As presented, beacon servers are configured with beacon selection policies.
The selection process and SCION path policies are described in Sections 7.1.4
and 10.9. In particular, the selection policy can implement the following factors:

• Beacon store parameters: internal configuration of a beacon store (see
Section 7.1.4), such as number of stored beacons, number of beacons to
select, number of stored selections, or how often the store is updated.

• Selection filters: factors to decide whether a given beacon is discarded.
It can include a blacklist (or whitelist) of ASes or allowed ranges of the
beacon’s properties. In particular, these properties can include:

– Path length: number of hops from an originator AS to the local
AS.

377

16 Configuration File Formats

– Last reception: time that has elapsed since the PCB arrived at the
AS’s beacon store.

– Expiration time: time when the given path segment expires (i.e.,
at least one of the hop fields expires).

– Last transmission: last time at which the beacon server propagated
the beacon or registered it as a path segment.

– Peering ASes: number of peering ASes from the beacon.
Disjointness can be another selection filter (an AS can specify how many
common ASes/interfaces a candidate beacon can have with the previously
selected beacons).

• Property weights: impact of different properties in the beacon selection
process.

• Policy parameters: used to implement the routing-policy extensions
(see Section 15.3.4), applicable to beaconing policies only. For example,
an AS can specify a list of ASes that can or cannot be used in path
segments. Similarly, the AS can specify a list of interfaces that can (or
cannot) be used to forward traffic.

Path Server

On start, a path server has to be provided with the current versions of the AS’s
TRC, the certificate of the AS, addresses of discovery servers, and the AS’s
static configuration file (optionally).

Certificate Server

A certificate server must be initialized with all TRCs of its ISD and all cer-
tificates of its AS (with the corresponding private keys). Additionally, it can
be provided with TRCs and certificates of remote ISDs/ASes. Besides TRCs
and certificates, a certificate server requires the addresses of the local AS’s
discovery servers, the AS’s static configuration file (optionally), and symmetric
keys used in the DRKey and OPT protocols.

RAINS and SIBRA Servers

RAINS and SIBRA servers require the current TRC and the address(es) of
discovery server(s), as well as their own configuration file.

End Host

An end host must possess the current TRC and the address(es) of discovery
server(s).

378

16.4 Router, Server, and End-Host Configuration

{"ISD_AS": "1-11",
"MTU": 1472,
"Overlay": "UDP/IPv4+6",
"BorderRouters": {

"br1-11-1": {
"InternalAddrs": [

{"Public": [{"Addr": "10.1.0.1", "L4Port": 30097},
{"Addr": "2001:db8:a0b:1f::1", "L4Port": 30097}]},

{"Public": [{"Addr": "10.1.0.2", "L4Port": 30097},
{"Addr": "2001:db8:a0b:1f::2", "L4Port": 30097}]}],

"Interfaces": {
"1": {"InternalAddrIdx": 0, "Overlay": "UDP/IPv4",

"Bind": {"Addr": "10.0.0.1", "L4Port": 30090},
"Public": {"Addr": "192.0.2.1", "L4Port": 44997},
"Remote": {"Addr": "219.33.0.2", "L4Port": 1239},
"Bandwidth": 500000000000, "ISD_AS": "1-12",
"LinkType": "CORE", "MTU": 1472},

"3": {"InternalAddrIdx": 0, "Overlay": "IPv6",
"Public": {"Addr": "2001:db8:a0b:1f::1", "L4Port": 50000},
"Remote": {"Addr": "2a00:14:4a:807::2e", "L4Port": 33997},
"Bandwidth": 500000000000, "ISD_AS": "1-12",
"LinkType": "CORE", "MTU": 4430},

"8": { "InternalAddrIdx": 1, "Overlay": "IPv4",
"Bind": {"Addr": "10.0.0.2", "L4Port": 40000},
"Public": {"Addr": "192.0.2.2", "L4Port": 50000},
"Remote": {"Addr": "156.3.22.37", "L4Port": 8112},
"Bandwidth": 250000000000, "ISD_AS": "1-13",
"LinkType": "CHILD", "MTU": 1480}}}},

"ConsistencyService": {
"1": {"Addr": "10.0.0.10", "L4Port": 2181},
... },

"BeaconService": {
"bs1-11-1": {

"Bind": [{"Addr": "192.168.0.1", "L4Port": 30045},
{"Addr": "2001:db8:a0b:1f::100", "L4Port": 30045}],

"Public": [{"Addr": "10.1.0.100", "L4Port": 30045,
"OverlayPort": 3004},
{"Addr": "2001:db8:a0b:1f::100", "L4Port": 30045}]},

"bs1-11-2": {
"Public": [{"Addr": "10.1.0.101", "L4Port": 30053},

{"Addr": "2001:db8:a0b:1f::101", "L4Port": 30053}]}},
"CertificateService": {

... },
"PathService": {

... },
"SibraService": {

... },
"RainsService": {

... }
}

Figure 16.4: An example of a discovery service configuration file.

379

17 Cryptographic Algorithms

ADRIAN PERRIG, PAWEL SZALACHOWSKI

In this chapter, we describe the algorithm agility property provided by SCION,
and the cryptographic algorithms used in the SCION architecture. Algorithm
selection was motivated by two main requirements, security and efficiency,
and was based on standards related to cryptography, recommendations, best
practices, and performance evaluations [95, 190, 221, 224].

Chapter Contents

17.1 Algorithm Agility . 381

17.2 Symmetric Primitives . 384

17.3 Asymmetric Primitives . 385

17.4 Post-Quantum Cryptography 386

17.1 Algorithm Agility

Algorithm agility is a property that allows a protocol to easily migrate from
one algorithm to another one. It is especially important in the context of
cryptographic algorithms, which become weaker over time. Since it is not
possible to predict advances in cryptanalysis techniques, every future-proof
protocol that employs cryptographic algorithms should provide a mechanism
for algorithm agility.

In SCION, cryptographic algorithms are deployed extensively. However, in
some cases algorithm selection is local to an AS and does not influence other
parties. The design of the SCION elements that require coordinated lists of
cryptographic algorithms follows the best current practice for cryptographic
algorithm agility [112] and provides powerful mechanisms to enhance algorithm
agility.

381

17 Cryptographic Algorithms

17.1.1 Local Algorithms

Some cryptographic operations in SCION are performed locally, only within an
AS’s infrastructure. This is an ideal case for algorithm agility, as the algorithms
used by an AS neither have to be synchronized with other parties, nor even
known by other ASes or end hosts. In particular, these operations are:

• Key generation: An AS needs to generate its own keys. At least one
symmetric (master key) and asymmetric key pair are required. To gen-
erate them, a strong pseudorandom number generator (PRNG) must be
used.

• Key derivation: All symmetric keys used within an AS (e.g., keys used
for hop-field authentication) are derived from the master key, which is
shared among relevant infrastructure elements. ASes can freely select
their favorite key derivation algorithm, as this decision influences only
locally used keys.

• Hop-field creation and verification: Hop fields are created (see Sec-
tion 7.1) with a MAC algorithm involved. However, hop fields are
processed only locally (within an AS), so the AS does not have to even
inform other parties which algorithm it is currently using. After hop fields
are created, they are used in forwarding paths, where they are verified
by border routers. Again, hop-field verification is local to the AS which
has created the hop field. For verification, the same MAC scheme is used
that has been used for hop-field creation.

As these operations use locally selected algorithms, ASes can change their
PRNG, MAC, and key derivation algorithms at any time, with no synchroniza-
tion with the rest of the network. It is only required that the AS’s infrastructure
elements use a consistent algorithm.

17.1.2 Mandatory-to-Implement Algorithms

In contrast to the locally used algorithms, some operations in SCION require a
globally coordinated list of supported cryptographic algorithms. These opera-
tions are:

• TRC creation and verification: TRCs rely heavily on digital signatures.
Each entity within a TRC is specified via its public-key certificate, which
in turn specifies the digital signature algorithm used. The list of used
algorithms has to be specified globally, as TRCs are cross-signed by other
ISDs and verified by remote end hosts.

• Beaconing: Similarly to TRCs, beacons are protected with digital sig-
natures. Also, AS-level certificates are used to identify the deployed
algorithm. Note that each AS can use a different algorithm (as long as
it is supported by other parties) to authenticate its AS entry. A beacon

382

17.1 Algorithm Agility

is only forwarded if every AS that received it can verify all signatures.
However, to support algorithm agility, SCION permits ASes to add multi-
ple signatures to beacons. This can result in beacons (and path segments
consequently) with different security properties.

• Path-segment registration and lookup: Every path segment is authen-
ticated by a single AS, and similarly the algorithm used is determined
from the AS certificate.

• Path revocation: Path revocation messages are authenticated using hash
trees (see Section 7.3), which are built with cryptographic hash functions.
As revocation messages can be verified by everyone, the algorithm used
has to be standardized. However, each AS can pick (from the agreed list)
its preferred hash function.

• SCMP authentication: SCMP packets are authenticated via the SCION
packet security extension, which requires either a public-key encryption
and a hash algorithm or a MAC scheme.

• DRKey: The DRKey protocol requires that a public-key encryption
algorithm and a key derivation algorithm are specified.

• Name authentication: As name authentication in SCION is built upon
RAINS, SCION relies on RAINS’s algorithm suites [240].

• End-entity authentication: End-entity authentication relies on the TLS
protocol, which provides algorithm agility and defines its own algorithm
suites [68].

SCION defines a set of mandatory-to-implement cryptographic algorithms,
and every allowed algorithm has a unique identifier assigned.

Authentication of TRCs, beacons, and path segments is based on AS-level
certificates. (General information on AS-level certificates is provided in Sec-
tion 4.2.3, while the detailed format of AS-level certificates is given in Sec-
tion 16.2.) Every certificate contains the algorithm field, which specifies the
digital signature algorithm used. An identifier of the digital signature algorithm
implicitly determines the size of the private and public keys used, as well as
the size of signatures produced. The certificates are short-lived, so an AS that
wishes to change its digital signature scheme can do it with the next certificate
re-issuance (up to a few days).

Path revocation messages are authenticated using a hash function. The hash
algorithm used is specified in beacons and path segments whose lifetime is
short, hence an AS can freely change the hash function used. An identifier of
the hash function implicitly specifies its output length. More concretely, a hash
function identifier is part of: (a) the RevocationToken field of every AS entry
(see details in Section 15.3.3 on Page 359), and (b) each revocation message
(see an example in Figure 15.18 on Page 362).

383

17 Cryptographic Algorithms

17.2 Symmetric Primitives

The only mandatory symmetric primitives in SCION are a cryptographic hash
function and a MAC scheme. The other symmetric primitives are local to an
AS, and do not have unique identifiers assigned. However, throughout this
section we list the algorithms supported in our current specification.

17.2.1 Pseudorandom Number Generator

Pseudorandom number generators (PRNGs) are used to generate AS symmetric
and asymmetric keys. As a PRNG’s output is critical for the security of AS
operations, it has to be selected carefully. The most common PRNGs are
provided by underlying operating systems, and may be software or hardware
components. By default, our implementation relies on the standard Linux
PRNG [147].

17.2.2 Key Derivation Function

Key derivation functions are used by ASes to generate temporary symmetric
keys used in production (e.g., for keys for hop-field generation). By default,
our implementation deploys Password-Based Key Derivation Function 2 [126],
with the following parameters: the output length is set to 16 bytes, the number
of iterations is 1,000, and its internal pseudorandom function is set to HMAC-
SHA256 [136].

17.2.3 Cryptographic Hash Function

Cryptographic hash functions are often elements of digital signature schemes,
however, in SCION they are also used as stand-alone primitives in path revoca-
tion.

SCION supports two cryptographic hash functions. The first one is Secure
Hash Algorithm 2 (SHA2) [185]. The supported variants of SHA2 are SHA-
256, SHA-384, and SHA-512, which produce a hash value of 256, 384, and
512 bits, respectively.

The second algorithm supported is SHA3 (Keccak) [32, 203]. Similarly, the
supported versions of SHA3 are SHA3-256, SHA3-384, and SHA3-512, which
produce a hash value of 256, 384, and 512 bits, respectively.

17.2.4 Message Authentication Codes (MACs)

Although the MAC scheme used for hop-field authentication/verification can
be freely selected by an AS, it is one of the most important cryptographic prim-

384

17.3 Asymmetric Primitives

itives in SCION. This function is executed by border routers for every packet
forwarded. Hence, besides security, it has to provide outstanding performance.

In our implementation, we use an AES-based CMAC [226] as the default
MAC scheme. This choice is motivated by efficiency. First, AES is commonly
supported in hardware. Second, CMAC requires a minimal number of AES
executions for authentication tag computation.

17.3 Asymmetric Primitives

The mandatory asymmetric primitives are digital signatures and public-key
encryption (although other protocols built on top of SCION may require other
asymmetric primitives). Throughout this section we list the algorithms sup-
ported in our current specification.

17.3.1 Digital Signatures

The requirements for digital signature schemes used in SCION are (a) security
(as certificates, beacons, path segments, and TRCs are protected with them), (b)
efficiency (as signature creation and verification are often executed), and (c)
short signature and public key.

There are two digital signature algorithms used currently in SCION. As
the default option the Edwards-curve Digital Signature Algorithm is used.
More specifically, SCION deploys its instantiation called Ed25519 [30]. This
signature scheme provides outstanding efficiency and signatures created are
relatively short (64 bytes).

An alternative to Ed25519 is the Elliptic Curve Digital Signature Algorithm
(ECDSA). Following the current best practice, we use the ECDSA-256 and
ECDSA-384 algorithms. In comparison with Ed25519, the ECDSA algorithms
are slower and produce longer signatures; however, when compared to standard
digital signature algorithms (such as RSA), they provide higher efficiency and
shorter signatures.

17.3.2 Public-Key Encryption

Public-key encryption in SCION is used only for key establishment in the
DRKey protocol (see Section 12.5). The requirements for this primitive are
similar to those for digital signatures, i.e., security (as the DRKey protocol
protects SCMP messages), and efficiency (as key establishment should not incur
significant overhead). In our current specification we use an Elliptic Curve
Integrated Encryption Scheme (ECIES) based on the curve Curve25519 [29].

385

17 Cryptographic Algorithms

17.4 Post-Quantum Cryptography

With advances in quantum computers, some asymmetric-cryptography systems
are threatened — as it becomes possible, for example, for a quantum computer
to factor an RSA modulus with a lower computational overhead. Thanks to
SCION’s algorithm agility, new crypto systems can be introduced to provide
a second layer of cryptography. This is relatively straightforward in the case
of digital signatures, hash functions, or message authentication codes, as for
example, a second signature can be computed with a different cryptographic
scheme, the second signature can be added to the message, and the receiver can
independently verify the signatures.

Algorithm agility is harder to achieve for encryption. A message that is
encrypted with two different encryption algorithms needs to be decrypted with
both algorithms; thus, if a receiver does not support an algorithm then it cannot
decrypt the message. Separately encrypting a message with different encryption
algorithms is in vain, as one achieves weakest-link security: the final message is
only as secure as the weakest of the algorithms, and potentially even weaker if
the encryption techniques compose unfavorably. In the case of digital signatures
and message authentication codes described above, the combination of multiple
schemes composes favorably, and the resulting security strength is at least that
of the strongest algorithm, if implemented correctly.

We now discuss the quantum-resilient cryptographic algorithms that the basic
SCION infrastructure can utilize.

Recently proposed symmetric-key cryptographic algorithms, such as PRFs
for key derivation, hash functions, encryption, or MACs, resist quantum com-
puters as long as the key length is sufficiently long.

For post-quantum key exchange mechanisms, new protocols that are based
on hard problems in ideal lattices have recently been proposed [5, 40]. These
approaches are based on the Ring Learning With Errors (R-LWE) problem.

One-time signatures provide a promising mechanism for the construction of
post-quantum signature algorithms [31,43]. These types of signatures are based
on one-way functions, which can be efficiently instantiated with cryptographic
hash functions.

The salient point here is that SCION is already prepared to accommodate
and switch to any cryptographic algorithm, thus scaling with respect to crypto-
graphic progress.

386

Bibliography

[1] Martı́n Abadi, Andrew Birrell, Ilya Mironov, Ted Wobber, and Yinglian
Xie. Global authentication in an untrustworthy world. In Proceedings
of Workshop on Hot Topics in Operating Systems (HotOS), May 2013.
Ź Page 10.

[2] Bernhard Ager, Nikolaos Chatzis, Anja Feldmann, Nadi Sarrar, Steve
Uhlig, and Walter Willinger. Anatomy of a large European IXP. In
Proceedings of the ACM SIGCOMM Conference, 2012. Ź Page 54.

[3] William Aiello, John Ioannidis, and Patrick McDaniel. Origin authen-
tication in interdomain routing. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS), October 2003.
Ź Page 307.

[4] Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh
Gopal, Jim Guilford, Erdinc Ozturk, Gil Wolrich, and Ronen Zohar.
Breakthrough AES performance with Intel AES New Instructions. White
paper, June, 2010. Ź Page 11.

[5] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange: A new hope. Technical Report 2015/1092,
Cryptology ePrint Archive, March 2016. Ź Page 386.

[6] American Registry for Internet Numbers (ARIN). Resource Public Key
Infrastructure (RPKI). https://www.arin.net/resources/rpki/.
Ź Page 61.

[7] David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Kopo-
nen, Daekyeong Moon, and Scott Shenker. Accountable Internet Pro-
tocol (AIP). In Proceedings of the ACM SIGCOMM Conference, 2008.
Ź Pages 25, 28, 94, 284, and 320.

[8] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert
Morris. Resilient overlay networks. In Proceedings of ACM Symposium
on Operating Systems Principles (SOSP), October 2001. Ź Pages 9, 24,
and 192.

[9] Tom Anderson, Ken Birman, Robert Broberg, Matthew Caesar, Dou-
glas Comer, Chase Cotton, Michael J. Freedman, Andreas Haeberlen,
Zachary G. Ives, Arvind Krishnamurthy, William Lehr, BoonThau Loo,
David Mazieres, Antonio Nicolosi, Jonathan M. Smith, Ion Stoica, Rob-
bert Renesse, Michael Walfish, Hakim Weatherspoon, and Christopher S.
Yoo. The NEBULA future Internet architecture. In The Future Internet,

387

https://www.arin.net/resources/rpki/

Bibliography

Lecture Notes in Computer Science. Springer-Verlag, 2013. Ź Pages 14
and 331.

[10] Tom Anderson, Timothy Roscoe, and David Wetherall. Preventing
Internet denial-of-service with capabilities. ACM SIGCOMM Computer
Communication Review, 2004. Ź Pages 244 and 276.

[11] Apache. ZooKeeper. http://zookeeper.apache.org. Ź Pages 147,
322, and 375.

[12] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking Bit-
coin: Routing attacks on cryptocurrencies. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2017. Ź Pages 32 and 192.

[13] Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose.
DNS security introduction and requirements. RFC 4033, March 2005.
Ź Pages 10 and 83.

[14] Katerina Argyraki and David R. Cheriton. Network capabilities: The
good, the bad and the ugly. In ACM HotNets, 2005. Ź Page 276.

[15] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,
Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata Teix-
eira. Avoiding traceroute anomalies with Paris traceroute. In Proceedings
of the ACM Internet Measurement Conference (IMC), 2006. Ź Page 222.

[16] Jozef Babiarz, Kwok Chan, and Fred Baker. Configuration guidelines
for DiffServ service classes. RFC 4594, August 2006. Ź Page 244.

[17] Fred Baker, Carol Iturralde, Francois Le Faucheur, and Bruce Davie. Ag-
gregation of RSVP for IPv4 and IPv6 reservations. RFC 3175, September
2001. Ź Page 277.

[18] Fred Baker and Pekka Savola. Ingress filtering for multihomed networks.
RFC 3704, March 2004. Ź Page 320.

[19] Hitesh Ballani, Yatin Chawathe, Sylvia Ratnasamy, Timothy Roscoe,
and Scott Shenker. Off by default! In Proceedings of ACM Workshop on
Hot Topics in Networks (HotNets), 2005. Ź Page 30.

[20] David Barrera, Laurent Chuat, Adrian Perrig, Raphael M. Reischuk, and
Pawel Szalachowski. The SCION Internet architecture. Communications
of the ACM, 60(6), June 2017. Ź Page 306.

[21] Cristina Basescu, Yue-Hsun Lin, Haoming Zhang, and Adrian Perrig.
High-speed inter-domain fault localization. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), May 2016. Ź Pages xvi
and 281.

[22] Cristina Basescu, Raphael M. Reischuk, Pawel Szalachowski, Adrian Per-
rig, Yao Zhang, Hsu-Chun Hsiao, Ayumu Kubota, and Jumpei Urakawa.
SIBRA: Scalable Internet bandwidth reservation architecture. In Pro-
ceedings of the Symposium on Network and Distributed Systems Security
(NDSS), February 2016. Ź Pages xvi, 39, 243, 270, and 306.

388

http://zookeeper.apache.org

Bibliography

[23] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf
Sasse, and Pawel Szalachowski. ARPKI: Attack resilient public-key
infrastructure. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), November 2014. Ź Pages xvi, 29, 40,
87, 89, and 302.

[24] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf
Sasse, and Pawel Szalachowski. Design, analysis, and implementation of
ARPKI: an attack-resilient public-key infrastructure. IEEE Transactions
on Dependable and Secure Computing (TDSC), 2017. Ź Pages 40, 87,
89, and 302.

[25] BBC. Asia communications hit by quake. http://news.bbc.co.uk/
2/hi/asia-pacific/6211451.stm, December 2006. Ź Pages 10
and 307.

[26] Stefan Bechtold and Adrian Perrig. Accountability in future Internet
architectures: Can technical and legal aspects be happily intertwined?
Communications of the ACM, 57(9):21–23, September 2014. Ź Page xvi.

[27] Steven Bellovin, David Clark, Adrian Perrig, and Dawn Song. A clean-
slate design for the next-generation secure Internet. Report for NSF
Global Environment for Network Innovations (GENI) workshop, July
2005. Ź Page xvii.

[28] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao,
Max Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. GENI:
A federated testbed for innovative network experiments. Computer
Networks, 61:5–23, 2014. Ź Page 15.

[29] Daniel J. Bernstein. Cryptography in NaCl. Networking and Cryptogra-
phy library, 3, 2009. Ź Page 385.

[30] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of Cryptographic
Engineering, 2(2):77–89, 2012. Ź Pages 353 and 385.

[31] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Pe-
ter Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS: practical stateless
hash-based signatures. In Advances in Cryptology - EUROCRYPT, 2015.
Ź Page 386.

[32] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak sponge function family main document. Submission to NIST
(Round 2), 3:30, 2009. Ź Page 384.

[33] Robert Beverly, Ryan Koga, and KC Claffy. Initial longitudinal analysis
of IP source spoofing capability on the Internet. Internet Society, 2013.
Ź Pages 313 and 320.

[34] Bobby Bhattacharjee, Ken Calvert, Jim Griffioen, Neil Spring, and James
Sterbenz. Postmodern internetwork architecture. Technical Report ITTC

389

http://news.bbc.co.uk/2/hi/asia-pacific/6211451.stm
http://news.bbc.co.uk/2/hi/asia-pacific/6211451.stm

Bibliography

Technical Report ITTC-FY2006-TR-45030-01, University of Kansas,
February 2006. Ź Pages 13 and 40.

[35] Andrew Birrell, Butler Lampson, Roger Needham, and Michael
Schroeder. A global authentication service without global trust. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P),
1986. Ź Pages 48 and 62.

[36] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970. Ź Page 270.

[37] Rakesh Babu Bobba, Laurent Eschenauer, Virgil Gligor, and William
Arbaugh. Bootstrapping security associations for routing in mobile
ad-hoc networks. In Proceedings of IEEE Global Telecommunications
Conference (Globecom), 2003. Ź Page 65.

[38] Raffaele Bolla, Roberto Bruschi, Franco Davoli, and Flavio Cucchietti.
Energy efficiency in the future Internet: a survey of existing approaches
and trends in energy-aware fixed network infrastructures. IEEE Commu-
nications Surveys & Tutorials, 13(2):223–244, 2011. Ź Page 331.

[39] Carsten Bormann and Paul Hoffman. Concise binary object representa-
tion (CBOR). RFC 7049, October 2013. Ź Page 114.

[40] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:
Take off the ring! Practical, quantum-secure key exchange from LWE.
Technical Report 2016/659, Cryptology ePrint Archive, June 2016.
Ź Page 386.

[41] R.T. Braden, D.A. Borman, and C. Partridge. Computing the Internet
checksum. RFC 1071, September 1988. Ź Page 364.

[42] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange
Format. RFC 7159, March 2014. Ź Page 369.

[43] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a
practical forward secure signature scheme based on minimal security
assumptions. Technical Report 2011/484, Cryptology ePrint Archive,
November 2011. Ź Page 386.

[44] Kevin Butler, Toni R. Farley, Patrick McDaniel, and Jennifer Rexford. A
Survey of BGP Security Issues and Solutions. Proceedings of the IEEE,
98(1), 2010. Ź Page 307.

[45] Matthew Caesar and Jennifer Rexford. BGP routing policies in ISP
networks. IEEE Network: The Magazine of Global Internetworking,
2005. Ź Page 5.

[46] Kenneth L. Calvert, James Griffioen, and Leonid Poutievski. Separating
routing and forwarding: A clean-slate network layer design. In Pro-
ceedings of International Conference on Broadband Communications,
Networks and Systems (BROADNETS), 2007. Ź Pages 13 and 40.

390

Bibliography

[47] Isidro Castineyra, Noel Chiappa, and Martha Steenstrup. The Nimrod
routing architecture. RFC 1992, August 1996. Ź Pages 13 and 40.

[48] Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried,
Shaanan Cohney, Matthew Green, Nadia Heninger, Ralf-Philipp Wein-
mann, Eric Rescorla, and Hovav Shacham. A systematic analysis of
the Juniper Dual EC incident. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS), October 2016.
Ź Page 305.

[49] Chen Chen, Daniele Enrico Asoni, David Barrera, George Danezis, and
Adrian Perrig. HORNET: High-speed onion routing at the network
layer. In Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS), October 2015. Ź Pages xvi, 35, 39, 306,
and 319.

[50] Chen Chen, David Barrera, and Adrian Perrig. Modeling data-plane
power consumption of future Internet architectures. In Proceedings of
the IEEE Conference on Collaboration and Internet Computing (CIC),
November 2016. Ź Pages xvi, 332, 333, and 334.

[51] Chen Chen and Adrian Perrig. PHI: Path-hidden lightweight anonymity
protocol at network layer. In Proceedings on Privacy Enhancing Tech-
nologies (PoPETs), July 2017. Ź Page xvi.

[52] Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben Laurie, and Eran
Messeri. Efficient gossip protocols for verifying the consistency of cer-
tificate logs. In Proceedings of the IEEE Conference on Communications
and Network Security (CNS), 2015. Ź Pages xvi and 92.

[53] Cisco. Requirements for next-generation core routing systems. https:
//perma.cc/58AX-TAQJ. Ź Page 306.

[54] Cisco. Field notice: Endless BGP convergence problem in Cisco IOS
software releases, 2001. Ź Page 235.

[55] Cisco. IOS and IOS XE software cluster management protocol remote
code execution vulnerability. https://perma.cc/M7P8-FH26, March
2017. Ź Page 305.

[56] David Clark, Robert Braden, Aaron Falk, and Venkata Pingali. FARA:
Reorganizing the addressing architecture. In Proceedings of the ACM
SIGCOMM Workshop on Future Directions in Network Architecture,
2003. Ź Pages 13 and 40.

[57] David Clark, Karen Sollins, John Wroclawski, Dina Katabi, Joanna
Kulik, Xiaowei Yang, Robert Braden, Ted Faber, Aaron Falk, Venkata
Pingali, Mark Handley, and Noel Chiappa. NewArch: Future generation
Internet architecture. Technical report, Air Force Research Labs, 2004.
Ź Pages 13 and 40.

391

https://perma.cc/58AX-TAQJ
https://perma.cc/58AX-TAQJ
https://perma.cc/M7P8-FH26

Bibliography

[58] The PlanetLab Consortium. PlanetLab, an open platform for devel-
oping, deploying, and accessing planetary-scale services. https:

//www.planet-lab.org/, 2016. Ź Page 221.
[59] Danny Cooper, Ethan Heilman, Kyle Brogle, Leonid Reyzin, and Sharon

Goldberg. On the risk of misbehaving RPKI authorities. In Proceedings
of the ACM Workshop on Hot Topics in Networks (HotNets), November
2013. Ź Page 65.

[60] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russ
Housley, and William Polk. Internet X.509 public key infrastructure
certificate and certificate revocation list (CRL) profile. RFC 5280, May
2008. Ź Pages 369 and 370.

[61] Miguel Medeiros Correia and Mustafa Tok. DNS-based Authentication
of Named Entities (DANE). Technical report, Universidade do Porto,
2011–2012. Ź Page 103.

[62] Court of Justice of the European Union (CURIA). Personal data:
Protection of individuals with regard to the processing of such data.
https://perma.cc/J2T3-VD67. Ź Page 35.

[63] Jim Cowie. The new threat: Targeted Internet traffic misdi-
rection. http://research.dyn.com/2013/11/mitm-internet-

hijacking/, November 2013. Ź Pages 7, 32, and 280.
[64] Stephen E. Deering and Robert Hinden. Internet protocol, version 6

(IPv6) specification. RFC 2460, December 1998. Ź Page 4.
[65] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and

simulation of a fair queueing algorithm. ACM SIGCOMM Computer
Communication Review, 1989. Ź Page 244.

[66] Amogh Dhamdhere and Constantine Dovrolis. Twelve years in the evolu-
tion of the Internet ecosystem. IEEE/ACM Transactions on Networking,
19(5):1420–1433, Sep 2011. Ź Page 38.

[67] DICE Control Plane Working Group. Inter-Domain Controller (IDC)
protocol specification. http://www.controlplane.net/, February 2010.
Version 1.1. Ź Page 271.

[68] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS)
protocol version 1.2. RFC 5246, August 2008. Ź Page 383.

[69] Daniel Eran Dilger. Oops: Microsoft leaks its golden key, unlocking
Windows Secure Boot and exposing the danger of backdoors. https:
//perma.cc/444S-SPR6, 2016. Ź Page 44.

[70] Wenxiu Ding, Zheng Yan, and Robert H. Deng. A survey on future
Internet security architectures. IEEE Access, 4:4374–4393, July 2016.
Ź Pages 302 and 330.

[71] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael
Schapira. PCC: Re-architecting congestion control for consistent high

392

https://www.planet-lab.org/
https://www.planet-lab.org/
https://perma.cc/J2T3-VD67
http://research.dyn.com/2013/11/mitm-internet-hijacking/
http://research.dyn.com/2013/11/mitm-internet-hijacking/
https://perma.cc/444S-SPR6
https://perma.cc/444S-SPR6

Bibliography

performance. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2015. Ź Page 189.

[72] John R. Douceur. The Sybil attack. In First International Workshop on
Peer-to-Peer Systems (IPTPS ’02), March 2002. Ź Page 48.

[73] Jim Duffy. Cisco’s IOS vs. Juniper’s JUNOS. https://perma.cc/

FY59-WV9D, April 2008. Network World. Ź Page 306.
[74] Adam Dunkels. Design and implementation of the lwIP TCP/IP stack.

Swedish Institute of Computer Science, 2:77, 2001. Ź Page 187.
[75] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman,

Michael Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro
Beekman, Mathias Payer, and Vern Paxson. The matter of Heartbleed.
In Proceedings of the ACM Internet Measurement Conference (IMC),
2014. Ź Page 74.

[76] Morris J. Dworkin. SP 800-38D, Recommendation for block cipher
modes of operation: Galois/Counter Mode (GCM) and GMAC, 2007.
Ź Page 353.

[77] Hurricane Electric. BGP peer report. http://bgp.he.net/report/
peers, 2016. Ź Page 146.

[78] Electronic Frontier Foundation. SSL Observatory. https://www.eff.
org/observatory, 2010. Ź Page 10.

[79] European Commission. FIRE: Future Internet research and experimenta-
tion. https://www.ict-fire.eu. Ź Page 15.

[80] European Commission. FIWARE: Core platform of the future Internet.
https://www.fiware.org. Ź Page 15.

[81] European Commission. FORWARD: Managing emerging threats in ICT
infrastructures. http://www.ict-forward.eu. Ź Page 14.

[82] European Commission. SysSec: A European network of excellence
in managing threats and vulnerabilities in the future Internet. http:

//www.syssec-project.eu/. Ź Page 14.
[83] Dino Farinacci, Vince Fuller, David Meyer, and Darrel Lewis. The loca-

tor/ID separation protocol (LISP). RFC 6830, January 2013. Ź Page 25.
[84] Adrian Farrel, Jean-Philippe Vasseur, and Jerry Ash. A path computation

element (PCE)-based architecture. RFC 4655, August 2006. Ź Page 277.
[85] Stephen Farrell and Hannes Tschofenig. Pervasive monitoring is an

attack. RFC 7258, May 2014. Ź Page xvii.
[86] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi,

Teemu Koponen, Bruce Maggs, K.C. Ng, Vyas Sekar, and Scott Shenker.
Less pain, most of the gain: incrementally deployable ICN. In Proceed-
ings of the ACM SIGCOMM Conference, August 2013. Ź Pages 12, 335,
336, and 337.

393

https://perma.cc/FY59-WV9D
https://perma.cc/FY59-WV9D
http://bgp.he.net/report/peers
http://bgp.he.net/report/peers
https://www.eff.org/observatory
https://www.eff.org/observatory
https://www.ict-fire.eu
https://www.fiware.org
http://www.ict-forward.eu
http://www.syssec-project.eu/
http://www.syssec-project.eu/

Bibliography

[87] Paul Ferguson and Daniel Senie. Network ingress filtering: Defeating
denial of service attacks which employ IP source address spoofing. RFC
2827, May 2000. Ź Page 320.

[88] Clarence Filsfils, Stefano Previdi, Bruno Decraene, Stephane Litkowski,
and Rob Shakir. Segment routing architecture. Internet-draft, February
2017. Ź Page 14.

[89] The Apache Software Foundation. Apache License Version 2.0, January
2004. http://www.apache.org/licenses/LICENSE-2.0, 2016.
Ź Page 306.

[90] Eva Galperin, Seth Schoen, and Peter Eckersley. A post mortem on
the Iranian DigiNotar attack. https://www.eff.org/deeplinks/

2011/09/post-mortem-iranian-diginotar-attack, October
2011. Ź Page 7.

[91] Lixin Gao and Jennifer Rexford. Stable Internet routing without global
coordination. Networking, IEEE/ACM Trans on, 9(6):681–692, 2001.
Ź Pages 234 and 328.

[92] GEANT. Bandwidth on demand. http://geant3.archive.geant.

net/service/BoD/pages/home.aspx, 2015. Ź Page 271.
[93] Yossi Gilad and Amir Herzberg. Plug-and-play IP security: Anonymity

infrastructure instead of PKI. In Proceedings of ESORICS, 2013.
Ź Page 284.

[94] Phillipa Gill, Michael Schapira, and Sharon Goldberg. A survey of inter-
domain routing policies. ACM SIGCOMM Computer Communication
Review, 44(1):28–34, 2013. Ź Pages 233, 234, and 235.

[95] Damien Giry. Cryptographic key length recommendation. http://www.
keylength.com, 2016. Ź Page 381.

[96] James Glanz. Power, pollution and the Internet. https://nyti.ms/

2k5AX0q, September 2012. The New York Times. Ź Page 331.
[97] Virgil Gligor, Shyh-Wei Luan, and Joseph Pato. On inter-realm au-

thentication in large distributed systems. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 1992. Ź Pages 48 and 62.

[98] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. Path-
let routing. In Proceedings of the ACM SIGCOMM Conference, 2009.
Ź Page 14.

[99] Fernando Gont. ICMP Attacks against TCP. RFC 5927, July 2010.
Ź Pages 7, 82, and 156.

[100] Geoffrey Goodell, William Aiello, Timothy Griffin, John Ioannidis,
Patrick D. McDaniel, and Aviel D. Rubin. Working around BGP: An
incremental approach to improving security and accuracy in interdomain
routing. In Proceedings of the Symposium on Network and Distributed
Systems Security (NDSS), February 2003. Ź Page 307.

394

http://www.apache.org/licenses/LICENSE-2.0
https://www.eff.org/deeplinks/2011/09/post-mortem-iranian-diginotar-attack
https://www.eff.org/deeplinks/2011/09/post-mortem-iranian-diginotar-attack
http://geant3.archive.geant.net/ service/BoD/pages/home.aspx
http://geant3.archive.geant.net/ service/BoD/pages/home.aspx
http://www.keylength.com
http://www.keylength.com
https://nyti.ms/2k5AX0q
https://nyti.ms/2k5AX0q

Bibliography

[101] Google. Roughtime. https://roughtime.googlesource.com,
2016. Ź Pages 160 and 289.

[102] Google. IPv6 adoption statistics. https://perma.cc/ZR8C-4CJG,
April 2017. Ź Page 4.

[103] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The stable
paths problem and interdomain routing. IEEE/ACM Transactions on
Networking (ToN), 10(2):232–243, 2002. Ź Page 235.

[104] Ben Grubb. These graphs show the impact Netflix is having on
the Australian Internet. http://www.smh.com.au/digital-

life/digital-life-news/these-graphs-show-the-impact-

netflix-is-having-on-the-australian-internet-20150401-

1mdc1i, 2015. The Sydney Morning Herald. Ź Pages 273 and 275.
[105] Ryan Hamilton, Janardhan Iyengar, Ian Swett, and Alyssa Wilk. QUIC:

A UDP-based secure and reliable transport for HTTP/2. Internet-Draft,
January 2016. Ź Pages 179 and 188.

[106] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek
Lim, Michel Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella,
David G. Andersen, John W. Byers, Srinivasan Seshan, and Peter
Steenkiste. XIA: Efficient support for evolvable internetworking. In
Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2012. Ź Page 14.

[107] Garrett Hardin. The tragedy of the commons. Science, 1968. Ź Page 245.
[108] Helion Technology. Giga AES cores. http://www.heliontech.com/

aes giga.htm. Ź Page 334.
[109] Stephen Herzog. Revisiting the Estonian cyber attacks: Digital threats

and multinational responses. Journal of Strategic Security, 4(2):49–60,
2011. Ź Page 7.

[110] R. Hinden and B. Haberman. Unique local IPv6 unicast addresses. RFC
4193, October 1995. Ź Page 114.

[111] Kerry Hinton, Jayant Baliga, Michael Feng, Robert Ayre, and Rodney S.
Tucker. Power consumption and energy efficiency in the Internet. IEEE
Network, 25(2):6–12, 2011. Ź Page 331.

[112] Russ Housley. Guidelines for cryptographic algorithm agility and select-
ing mandatory-to-implement algorithms. RFC 7696, 2015. Ź Page 381.

[113] Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Adrian Perrig, Akira Yamada,
Samuel C. Nelson, Marco Gruteser, and Wei Meng. LAP: Lightweight
anonymity and privacy. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2012. Ź Pages xvi and 39.

[114] Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Sangjae Yoo, Xin Zhang,
Soo Bum Lee, Virgil Gligor, and Adrian Perrig. STRIDE: Sanctuary trail
– refuge from Internet DDoS entrapment. In Proceedings of the ACM

395

https://roughtime.googlesource.com
https://perma.cc/ZR8C-4CJG
http://www.smh.com.au/digital-life/digital-life-news/these-graphs-show-the-impact-netflix-is-having-on-the-australian-internet-20150401-1mdc1i
http://www.smh.com.au/digital-life/digital-life-news/these-graphs-show-the-impact-netflix-is-having-on-the-australian-internet-20150401-1mdc1i
http://www.smh.com.au/digital-life/digital-life-news/these-graphs-show-the-impact-netflix-is-having-on-the-australian-internet-20150401-1mdc1i
http://www.smh.com.au/digital-life/digital-life-news/these-graphs-show-the-impact-netflix-is-having-on-the-australian-internet-20150401-1mdc1i
http://www.heliontech.com/aes_giga.htm
http://www.heliontech.com/aes_giga.htm

Bibliography

Asia Conference on Computer and Communications Security (AsiaCCS),
2013. Ź Pages xvi, 276, and 277.

[115] Yih-Chun Hu, Adrian Perrig, and David Johnson. Wormhole attacks in
wireless networks. IEEE Journal on Selected Areas in Communications
(JSAC), 24(2), February 2006. Ź Pages 311 and 312.

[116] Yih-Chun Hu, Adrian Perrig, and Marvin Sirbu. SPV: Secure path
vector routing for securing BGP. In Proceedings of the ACM SIGCOMM
Conference, September 2004. Ź Page 307.

[117] Geoff Huston. BGP in 2014. http://www.potaroo.net/ispcol/

2015-01/bgp2014.html, January 2015. Ź Pages 10 and 307.
[118] Red Hat Inc. Ansible, automation for everyone. https://www.

ansible.com, 2016. Ź Page 218.
[119] International Telecommunication Union. Information technology —

ASN.1 encoding rules: Specification of basic encoding rules (BER),
canonical encoding rules (CER), and distinguished encoding rules (DER).
ITU-T Recommendation X.690, 2002. Ź Page 370.

[120] Internet Assigned Numbers Authority (IANA). Protocol numbers.
https://perma.cc/FBE8-S2W5. Ź Pages 345 and 350.

[121] Internet Corporation for Assigned Names and Numbers (ICANN).
Montevideo statement on the future of Internet cooperation. https:

//www.icann.org/news/announcement-2013-10-07-en, October
2013. Ź Page 44.

[122] Internet Corporation for Assigned Names and Numbers (ICANN). Stew-
ardship of IANA functions transitions to global Internet community as
contract with U.S. government ends. https://www.icann.org/news/
announcement-2016-10-01-en, October 2016. Ź Page 44.

[123] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. Networking named
content. In Proceedings of the International Conference on Emerging
Networking Experiments and Technologies (CoNEXT), 2009. Ź Page 13.

[124] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,
Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat.
B4: Experience with a globally-deployed software defined WAN. In Pro-
ceedings of the ACM SIGCOMM Conference, August 2013. Ź Page 33.

[125] Petri Jokela, András Zahemszky, Christian Esteve Rothenberg, Somaya
Arianfar, and Pekka Nikander. LIPSIN: Line speed publish/subscribe
inter-networking. In Proceedings of the ACM SIGCOMM Conference,
2009. Ź Page 14.

[126] Burt Kaliski. PKCS #5: Password-based cryptography specification
version 2.0. RFC 2898, 2000. Ź Page 384.

396

http://www.potaroo.net/ispcol/2015-01/bgp2014.html
http://www.potaroo.net/ispcol/2015-01/bgp2014.html
https://www.ansible.com
https://www.ansible.com
https://perma.cc/FBE8-S2W5
https://www.icann.org/news/announcement-2013-10-07-en
https://www.icann.org/news/announcement-2013-10-07-en
https://www.icann.org/news/announcement-2016-10-01-en
https://www.icann.org/news/announcement-2016-10-01-en

Bibliography

[127] Farouk Kamoun and Leonard Kleinrock. Stochastic performance eval-
uation of hierarchical routing for large networks. Computer Networks,
3:337–353, November 1979. Ź Pages 13 and 40.

[128] Min Suk Kang and Virgil D. Gligor. Routing bottlenecks in the Internet:
Causes, exploits, and countermeasures. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2014.
Ź Page 322.

[129] Min Suk Kang, Soo Bum Lee, and Virgil D. Gligor. The Crossfire attack.
In Proceedings of the IEEE Symposium on Security and Privacy (S&P),
May 2013. Ź Pages 39, 245, 276, and 322.

[130] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. Pretty Good BGP:
improving BGP by cautiously adopting routes. In Proceedings of the
IEEE Conference on Network Protocols (ICNP), 2006. Ź Page 328.

[131] Ethan Katz-Bassett, Colin Scott, David Choffnes, Italo Cunha, Vytautas
Valancius, Nick Feamster, Harsha Madhyastha, Thomas Anderson, and
Arvind Krishnamurthy. LIFEGUARD: Practical repair of persistent route
failures. In Proceedings of the ACM SIGCOMM Conference, August
2012. Ź Page 24.

[132] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee, Yih-
Chun Hu, and Adrian Perrig. Lightweight source authentication and path
validation. In Proceedings of the ACM SIGCOMM Conference, August
2014. Ź Pages xvi, 279, 282, 291, 295, and 302.

[133] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson,
and Virgil Gligor. Accountable key infrastructure (AKI): A proposal for a
public-key validation infrastructure. In Proceedings of the International
World Wide Web Conference (WWW), 2013. Ź Page xvi.

[134] Leonard Kleinrock and Farouk Kamoun. Hierarchical routing for large
networks: Performance evaluation and optimization. Computer Net-
works, 1:155–174, 1977. Ź Pages 13 and 40.

[135] Teemu Koponen, Scott Shenker, Hari Balakrishnan, Nick Feamster,
Igor Ganichev, Ali Ghodsi, P. Brighten Godfrey, Nick McKeown, Guru
Parulkar, Barath Raghavan, Jennifer Rexford, Somaya Arianfar, and
Dmitriy Kuptsov. Architecting for innovation. ACM SIGCOMM Com-
puter Communication Review, July 2011. Ź Page 14.

[136] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing
for message authentication. RFC 2104, 2000. Ź Pages 353 and 384.

[137] Brian Krebs. DDoS on Dyn impacts Twitter, Spotify, Red-
dit. https://krebsonsecurity.com/2016/10/ddos-on-dyn-

impacts-twitter-spotify-reddit/, 2016. Ź Pages 7 and 30.
[138] Brian Krebs. Hacked cameras, DVRs powered today’s massive In-

ternet outage. https://krebsonsecurity.com/2016/10/hacked-

397

https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/
https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/

Bibliography

cameras-dvrs-powered-todays-massive-internet-outage/,
2016. Ź Page 30.

[139] Brian Krebs. Israeli online attack service ‘vDOS’ earned $600,000
in two years. http://krebsonsecurity.com/2016/09/israeli-

online-attack-service-vdos-earned-600000-in-two-

years/, 2016. Ź Page 320.
[140] Brian Krebs. KrebsOnSecurity Hit With Record DDoS.

https://krebsonsecurity.com/2016/09/krebsonsecurity-

hit-with-record-ddos/, 2016. Ź Pages 30 and 244.
[141] Mirjam Kühne and Vasco Asturiano. Update on AS Path Lengths

Over Time. https://labs.ripe.net/Members/mirjam/update-

on-as-path-lengths-over-time, 2012. Ź Page 38.
[142] Sanjeev Kumar. Smurf-based distributed denial of service (DDoS) attack

amplification in Internet. In Second International Conference on Internet
Monitoring and Protection (ICIMP), July 2007. Ź Page 7.

[143] Yi-Hsuan Kung, Tae-Ho Lee, Po-Ning Tseng, Hsu-Chun Hsiao, Tiffany
Hyun-Jin Kim, Soo Bum Lee, Yue-Hsun Lin, and Adrian Perrig. A
practical system for guaranteed access in the presence of DDoS attacks
and flash crowds. In Proceedings of the IEEE Conference on Network
Protocols (ICNP), October 2015. Ź Page xvi.

[144] Nate Kushman, Srikanth Kandula, and Dina Katabi. Can you hear me
now?!: It must be BGP. ACM SIGCOMM Computer Communication
Review, April 2007. Ź Pages 5 and 24.

[145] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. De-
layed Internet routing convergence. In Proceedings of the ACM SIG-
COMM Conference, 2000. Ź Page 5.

[146] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide,
and Farnam Jahanian. Internet inter-domain traffic. Proceedings of the
ACM SIGCOMM Conference, 2010. Ź Page 273.

[147] Patrick Lacharme, Andrea Rock, Vincent Strubel, and Marion Videau.
The Linux Pseudorandom Number Generator Revisited. https://hal.
archives-ouvertes.fr/hal-01005441, 2012. Ź Page 384.

[148] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
Generals Problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):382–401, July 1982. Ź Page 71.

[149] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate transparency.
RFC 6962, June 2013. Ź Page 87.

[150] Soo Bum Lee and Virgil D. Gligor. FLoc: Dependable link access for
legitimate traffic in flooding attacks. In IEEE ICDCS, 2010. Ź Pages 244
and 276.

398

https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
http://krebsonsecurity.com/2016/09/israeli-online-attack-service-vdos-earned-600000-in-two-years/
http://krebsonsecurity.com/2016/09/israeli-online-attack-service-vdos-earned-600000-in-two-years/
http://krebsonsecurity.com/2016/09/israeli-online-attack-service-vdos-earned-600000-in-two-years/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://labs.ripe.net/Members/mirjam/update-on-as-path-lengths-over-time
https://labs.ripe.net/Members/mirjam/update-on-as-path-lengths-over-time
https://hal.archives-ouvertes.fr/hal-01005441
https://hal.archives-ouvertes.fr/hal-01005441

Bibliography

[151] Soo Bum Lee, Min Suk Kang, and Virgil D. Gligor. CoDef: Collaborative
defense against large-scale link-flooding attacks. In Proceedings of the
International Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2013. Ź Page 277.

[152] Tae-Ho Lee, Pawel Szalachowski, David Barrera, and Adrian Perrig.
Bootstrapping real-world deployment of future Internet architectures.
arXiv:1508.02240, August 2015. Ź Pages 327 and 329.

[153] Taeho Lee, Christos Pappas, David Barrera, Pawel Szalachowski, and
Adrian Perrig. Source accountability with domain-brokered privacy. In
Proceedings of the International Conference on Emerging Networking
Experiments and Technologies (CoNEXT), December 2016. Ź Pages xvi
and 319.

[154] Taeho Lee, Christos Pappas, Cristina Basescu, Jun Han, Torsten Hoefler,
and Adrian Perrig. Source-based path selection: The data plane perspec-
tive. In Proceedings of ACM Conference on Future Internet Technologies
(CFI), June 2015. Ź Page xvi.

[155] Taeho Lee, Christos Pappas, Adrian Perrig, Virgil Gligor, and Yih-Chun
Hu. The case for in-network replay suppression. In Proceedings of
the ACM Asia Conference on Computer and Communications Security
(AsiaCCS), April 2017. Ź Pages xvi and 323.

[156] Taeho Lee, Christos Pappas, Pawel Szalachowski, and Adrian Perrig.
Communication based on per-packet one-time addresses. In Proceedings
of the IEEE Conference on Network Protocols (ICNP), November 2016.
Ź Pages xvi and 319.

[157] Matt Lepinski. BGPsec protocol specification. Internet-Draft, June 2016.
Ź Pages 33 and 307.

[158] Matt Lepinski and Sean Turner. An overview of BGPsec. Internet-Draft,
June 2016. Ź Pages 27, 33, and 307.

[159] SoundCloud Limited. Prometheus, from metrics to insight. https:

//prometheus.io/, 2016. Ź Page 220.
[160] Pat Litke and Joe Stewart. BGP hijacking for cryptocurrency profit.

https://www.secureworks.com/research/bgp-hijacking-

for-cryptocurrency-profit, August 2014. Ź Page 32.
[161] Bisheng Liu, Jerry T. Chiang, Jason J. Haas, and Yih-Chun Hu. Coward

attacks in vehicular networks. ACM SIGMOBILE Mobile Computing
and Communications Review, 14(3):34–36, 2010. Ź Pages 280, 282,
and 292.

[162] Doug Madory. Sprint, Windstream: Latest ISPs to hijack foreign net-
works. http://research.dyn.com/2014/09/latest-isps-to-

hijack/, September 2014. Ź Page 32.

399

https://prometheus.io/
https://prometheus.io/
https://www.secureworks.com/research/bgp-hijacking-for-cryptocurrency-profit
https://www.secureworks.com/research/bgp-hijacking-for-cryptocurrency-profit
http://research.dyn.com/2014/09/latest-isps-to-hijack/
http://research.dyn.com/2014/09/latest-isps-to-hijack/

Bibliography

[163] Georgios Mantas, Natalia Stakhanova, Hugo Gonzalez, Hossein Ha-
dian Jazi, and Ali A. Ghorbani. Application-layer denial of service
attacks: taxonomy and survey. International Journal of Information and
Computer Security, 7(2-4):216–239, 2015. Ź Page 320.

[164] Ronald Margolis, Leslie Derr, Michelle Dunn, Michael Huerta, Jennie
Larkin, Jerry Sheehan, Mark Guyer, and Eric D. Green. The National
Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitaliz-
ing on biomedical big data. Journal of the American Medical Informatics
Association, 2014. Ź Page 273.

[165] Moxie Marlinspike. SSL and the future of authenticity. http://blog.
thoughtcrime.org/ssl-and-the-future-of-authenticity,
Apr 2011. Ź Page 10.

[166] Stephanos Matsumoto and Raphael M. Reischuk. Certificates-as-an-
Insurance: Incentivizing accountability in SSL/TLS. In Workshop on
Security of Emerging Networking Technologies (SENT), 2015. Ź Pages 7
and 87.

[167] Stephanos Matsumoto and Raphael M. Reischuk. IKP: Turning a PKI
around with decentralized automated incentives. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2017. Ź Pages 7
and 87.

[168] Stephanos Matsumoto, Raphael M. Reischuk, Pawel Szalachowski,
Tiffany Hyun-Jin Kim, and Adrian Perrig. Authentication Challenges
in a Global Environment. ACM Transactions on Privacy and Security
(TOPS), 20(1), 2017. Ź Page xvi.

[169] Stephanos Matsumoto, Samuel Steffen, and Adrian Perrig. CASTLE:
CA signing in a touch-less environment. In Proceedings of Annual
Computer Security Applications Conference (ACSAC), December 2016.
Ź Pages xvi and 37.

[170] David Mazieres, Michael Kaminsky, M. Frans Kaashoek, and Emmett
Witchel. Separating key mangement from file system security. In Pro-
ceedings of SOSP, 1999. Ź Page 284.

[171] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
flow: enabling innovation in campus networks. ACM SIGCOMM Com-
puter Communication Review, 38(2):69–74, March 2008. Ź Page 15.

[172] Danny McPherson, Vijay Gill, Daniel Walton, and Alvaro Retana. Border
Gateway Protocol (BGP) Persistent Route Oscillation Condition. RFC
3345, August 2002. Ź Page 235.

[173] Tom Mendelsohn. Secure Boot snafu: Microsoft leaks
backdoor key, firmware flung wide open [updated]. http:

//arstechnica.co.uk/security/2016/08/microsoft-secure-

boot-firmware-snafu-leaks-golden-key/, 2016. Ź Page 44.

400

http://blog.thoughtcrime.org/ssl-and-the-future-of-authenticity
http://blog.thoughtcrime.org/ssl-and-the-future-of-authenticity
http://arstechnica.co.uk/security/2016/08/microsoft-secure-boot-firmware-snafu-leaks-golden-key/
http://arstechnica.co.uk/security/2016/08/microsoft-secure-boot-firmware-snafu-leaks-golden-key/
http://arstechnica.co.uk/security/2016/08/microsoft-secure-boot-firmware-snafu-leaks-golden-key/

Bibliography

[174] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Proceedings of Advances in Cryptology, 1988. Ź Pages 88
and 144.

[175] David Mills, Jim Martin, Jack Burbank, and William Kasch. Network
Time Protocol version 4: Protocol and algorithms specification. RFC
5905, 2010. Ź Pages 160 and 289.

[176] Stephen A. Misel. Wow, AS7007! https://web.archive.org/web/

20151027055050/http://merit.edu/mail.archives/nanog/

1997-04/msg00340.html, April 1997. Ź Page 5.
[177] Mitre Corporation. CVE-2008-1447: “DNS insufficient socket entropy

vulnerability” or “the Kaminsky bug”. https://cve.mitre.org/cgi-
bin/cvename.cgi?name“CVE-2008-1447, 2008. Ź Page 134.

[178] Paul Mockapetris and Kevin J. Dunlap. Development of the Domain
Name System. ACM SIGCOMM Computer Communication Review,
18(4):123–133, August 1988. Ź Page 139.

[179] Robert Moskowitz and Pekka Nikander. Host Identity Protocol (HIP)
Architecture. RFC 4423, May 2006. Ź Page 284.

[180] Robert Moskowitz, Pekka Nikander, Petri Jokela, and Thomas R. Hen-
derson. Host Identity Protocol (HIP). RFC 5201, 2008. Ź Pages 28
and 94.

[181] John Nagle. On Packet Switches with Infinite Storage. RFC 970, De-
cember 1985. Ź Page 244.

[182] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazieres, Michael
Miller, and Arun Seehra. Verifying and enforcing network paths with
ICING. In Proceedings of the International Conference on Emerging Net-
working Experiments and Technologies (CoNEXT), 2011. Ź Page 280.

[183] Maitreya Natu and Jelena Mirkovic. Fine-grained capabilities for flood-
ing DDoS defense using client reputations. In ACM LSAD, 2007.
Ź Pages 244 and 276.

[184] NDN. Named Data Networking (NDN) - A Future Internet Architecture.
http://www.named-data.net/, June 2015. Ź Pages 13 and 331.

[185] NIST. FIPS PUB 180-2, Secure Hash Standard (SHS), 2008. Ź Page 384.
[186] Erik Nordstrom, David Shue, Prem Gopalan, Rob Kiefer, Matvey Arye,

Steven Ko, Jennifer Rexford, and Michael J. Freedman. Serval: An
end-host stack for service-centric networking. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2012. Ź Pages 14 and 153.

[187] North American Network Operators’ Group (NANOG). Mailing list and
archives. https://www.nanog.org/list/archives. Ź Page 244.

[188] Octave Klaba / Oles. 1156 Gbps DDoS. https://twitter.com/

olesovhcom/status/778019962036314112, 2016. Ź Page 244.

401

https://web.archive.org/web/20151027055050/http://merit.edu/mail.archives/nanog/1997-04/msg00340.html
https://web.archive.org/web/20151027055050/http://merit.edu/mail.archives/nanog/1997-04/msg00340.html
https://web.archive.org/web/20151027055050/http://merit.edu/mail.archives/nanog/1997-04/msg00340.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1447
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1447
http://www.named-data.net/
https://www.nanog.org/list/archives
https://twitter.com/olesovhcom/status/778019962036314112
https://twitter.com/olesovhcom/status/778019962036314112

Bibliography

[189] Open Networking Foundation. OpenFlow. https://www.

opennetworking.org/sdn-resources/openflow. Ź Page 15.
[190] Hilarie Orman and Paul Hoffman. Determining strengths for public keys

used for exchanging symmetric keys. RFC 3766, April 2004. Ź Page 381.
[191] Charlie Osborne. Microsoft Secure Boot key debacle causes secu-

rity panic. http://www.zdnet.com/article/microsoft-secure-
boot-key-debacle-causes-security-panic/, 2016. Ź Page 44.

[192] Palo Alto Research Center (PARC). Project CCNx. http://blogs.

parc.com/ccnx. Ź Page 13.
[193] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis. CHOKe – a state-

less active queue management scheme for approximating fair bandwidth
allocation. In IEEE INFOCOM, 2000. Ź Page 277.

[194] Christos Pappas, Katerina Argyraki, Stefan Bechtold, and Adrian Perrig.
Transparency instead of neutrality. In Proceedings of the ACM Workshop
on Hot Topics in Networks (HotNets), 2015. Ź Pages xvi and 35.

[195] Bryan Parno, Adrian Perrig, and David Andersen. SNAPP: Stateless
network-authenticated path pinning. In Proceedings of the ACM Asia
Conference on Computer and Communications Security (AsiaCCS),
March 2008. Ź Page 14.

[196] Bryan Parno, Dan Wendlandt, Elaine Shi, Adrian Perrig, Bruce Maggs,
and Yih-Chun Hu. Portcullis: Protecting connection setup from denial-
of-capability attacks. In Proceedings of the ACM SIGCOMM Conference,
2007. Ź Pages 244 and 276.

[197] Diego Perino and Matteo Varvello. A reality check for content centric
networking. In ACM SIGCOMM Workshop on Information-centric
Networking, 2011. Ź Page 335.

[198] Nicole Perlroth. Hackers used new weapons to disrupt major websites
across U.S. https://nyti.ms/2oPyvhB, October 2016. Ź Page 7.

[199] Simon Peter, Umar Javed, Qiao Zhang, Doug Woos, Thomas Anderson,
and Arvind Krishnamurthy. One tunnel is (often) enough. In Proceedings
of the ACM SIGCOMM Conference, 2014. Ź Pages 194 and 416.

[200] Nathaniel Popper. How China took center stage in Bitcoin’s civil war.
https://nyti.ms/2k7L5lg, June 2016. Ź Page 94.

[201] Jon Postel. Internet Protocol. RFC 791, September 1981. Ź Page 4.
[202] Matthew Prince. Technical details behind a 400Gbps NTP amplifica-

tion DDoS attack. https://perma.cc/9ZNP-TBHV, February 2014.
Ź Page 244.

[203] Penny Pritzker and Patrick D. Gallagher. SHA-3 standard: Permutation-
based hash and extendable-output functions. Information Tech Labora-
tory National Institute of Standards and Technology, pages 1–35, 2014.
Ź Page 384.

402

https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
http://www.zdnet.com/article/microsoft-secure-boot-key-debacle-causes-security-panic/
http://www.zdnet.com/article/microsoft-secure-boot-key-debacle-causes-security-panic/
http://blogs.parc.com/ccnx
http://blogs.parc.com/ccnx
https://nyti.ms/2oPyvhB
https://nyti.ms/2k7L5lg
https://perma.cc/9ZNP-TBHV

Bibliography

[204] Barath Raghavan and Alex C. Snoeren. A system for authenticated policy-
compliant routing. In Proceedings of the ACM SIGCOMM Conference,
2004. Ź Page 14.

[205] Barath Raghavan, Patric Verkaik, and Alex C. Snoeren. Secure and
policy-compliant source routing. IEEE/ACM Transactions on Network-
ing, 17(3), 2009. Ź Page 14.

[206] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,
Damon Wischik, and Mark Handley. Improving datacenter performance
and robustness with Multipath TCP. In Proceedings of the ACM SIG-
COMM Conference, 2011. Ź Pages 189 and 223.

[207] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. How
hard can it be? Designing and implementing a deployable multipath
TCP. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2012. Ź Pages 188, 189, and 223.

[208] Dipankar Raychaudhuri, Kiran Nagaraja, and Arun Venkataramani. Mo-
bilityFirst: A robust and trustworthy mobility-centric architecture for the
future Internet. ACM SIGMOBILE Mobile Computing and Communica-
tions Review, July 2012. Ź Page 14.

[209] Yakov Rekhter, Tony Li, and Susan Hares. A Border Gateway Protocol
4 (BGP-4). RFC 4271, January 2006. Ź Page 4.

[210] Yakov Rekhter, Bob Moskowitz, Daniel Karrenberg, Geert Jan de Groot,
and Eliot Lear. Address allocation for private internets. RFC 1918,
February 1996. Ź Pages 114, 202, 232, 296, and 345.

[211] Réseaux IP Européens Network Coordination Centre (RIPE NCC).
YouTube hijacking: A RIPE NCC RIS case study. https://perma.

cc/4DK6-FKR3, March 2008. Ź Page 6.
[212] Ronald Rivest. Can we eliminate certificate revocation lists? In Financial

Cryptography, 1998. Ź Pages 75 and 76.
[213] Scott Rose. DNS Security (DNSSEC) DNSKEY Algorithm IANA

Registry Updates. RFC 6725, August 2012. Ź Page 370.
[214] Christian Rossow. Amplification hell: revisiting network protocols

for DDoS abuse. In Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS), February 2014. Ź Page 31.

[215] Benjamin Rothenberger, Daniele E. Asoni, David Barrera, and Adrian
Perrig. Internet kill switches demystified. In Proceedings of EuroSec,
April 2017. Ź Page 325.

[216] Amit Sahoo, Krishna Kant, and Prasant Mohapatra. BGP convergence de-
lay under large-scale failures: Characterization and solutions. Computer
Communications, 32(7), May 2009. Ź Pages 10 and 307.

403

https://perma.cc/4DK6-FKR3
https://perma.cc/4DK6-FKR3

Bibliography

[217] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end
arguments in system design. ACM Transactions on Computer Systems,
2(4), November 1984. Ź Page 11.

[218] Sandstorm. Cap’n Proto data interchange format and RPC system.
https://capnproto.org/. Ź Pages 212 and 356.

[219] Max Schuchard, Eugene Y. Vasserman, Abdelaziz Mohaisen, Denis Foo
Kune, Nicholas Hopper, and Yongdae Kim. Losing control of the Internet:
Using the data plane to attack the control plane. In Proceedings of
the Symposium on Network and Distributed Systems Security (NDSS),
February 2011. Ź Pages 5, 11, 274, 291, and 307.

[220] Abhigyan Sharma, Xiaozheng Tie, Hardeep Uppal, Arun Venkataramani,
David Westbrook, and Aditya Yadav. A global name service for a highly
mobile internetwork. In Proceedings of the ACM SIGCOMM Conference,
August 2014. Ź Pages 14 and 34.

[221] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre. Recommendations for
Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS). RFC 7525, May 2015. Ź Page 381.

[222] Madhavapeddi Shreedhar and George Varghese. Efficient fair queuing
using deficit round-robin. IEEE/ACM Transactions on Networking, 1996.
Ź Page 277.

[223] Karen E. Sirois and Stephen T. Kent. Securing the Nimrod routing archi-
tecture. In Proceedings of the Symposium on Network and Distributed
Systems Security (NDSS), February 1997. Ź Page 13.

[224] Nigel P. Smart, Vincent Rijmen, Bogdan Warinschi, Gaven Watson, and
Rodica Tirtea. Algorithms, key size and parameters report. Technical
report, European Union Agency for Network and Information Security
Agency (ENISA), November 2014. Ź Page 381.

[225] Christopher Soghoian and Sid Stamm. Certified lies: Detecting and
defeating government interception attacks against SSL. In Financial
Cryptography and Data Security. Springer, 2012. Ź Page 87.

[226] Junhyuk Song, Radha Poovendran, Jicheol Lee, and Tetsu Iwata. The
AES-CMAC algorithm. RFC 4493, June 2006. Ź Pages 353 and 385.

[227] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP topolo-
gies with Rocketfuel. ACM SIGCOMM Computer Communication Re-
view, 32(4):133–145, 2002. Ź Page 335.

[228] Toby Sterling. Second firm warns of concern after Dutch hack. https:
//perma.cc/MUU3-W996, 2011. Ź Page 7.

[229] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh
Surana. Internet indirection infrastructure. IEEE/ACM Transactions on
Networking, April 2004. Ź Page 14.

404

https://capnproto.org/
https://perma.cc/MUU3-W996
https://perma.cc/MUU3-W996

Bibliography

[230] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing:
a scalable architecture to approximate fair bandwidth allocations in high-
speed networks. IEEE/ACM Trans. Netw., 11(1):33–46, February 2003.
Ź Pages 268 and 277.

[231] Ahren Studer and Adrian Perrig. The Coremelt attack. In Proceedings of
the European Symposium on Research in Computer Security (ESORICS),
September 2009. Ź Pages 39, 244, 245, 274, 276, and 322.

[232] Lakshminarayanan Subramanian, Matthew Caesar, Cheng Tien Ee, Mark
Handley, Morley Mao, Scott Shenker, and Ion Stoica. HLP: A next
generation inter-domain routing protocol. In Proceedings of the ACM
SIGCOMM Conference, 2005. Ź Pages 13 and 40.

[233] Pawel Szalachowski, Laurent Chuat, Taeho Lee, and Adrian Perrig.
RITM: Revocation in the middle. In Proceedings of IEEE International
Conference on Distributed Computing Systems (ICDCS), June 2016.
Ź Page xvi.

[234] Pawel Szalachowski, Laurent Chuat, and Adrian Perrig. PKI safety
net (PKISN): Addressing the too-big-to-be-revoked problem of the TLS
ecosystem. In Proceedings of the IEEE European Symposium on Security
and Privacy (Euro S&P), April 2016. Ź Pages xvi and 92.

[235] Pawel Szalachowski, Stephanos Matsumoto, and Adrian Perrig. PoliCert:
Secure and flexible TLS certificate management. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
November 2014. Ź Pages xvi, 29, 40, 87, and 89.

[236] Oliver Tamm, Christian Hermsmeyer, and Allen M. Rush. Eco-
sustainable system and network architectures for future transport net-
works. Bell Labs Technical Journal, 14(4):311–327, 2010. Ź Page 333.

[237] Sasu Tarkoma, Mark Ain, and Kari Visala. The Publish/Subscribe Inter-
net Routing Paradigm (PSIRP): Designing the future Internet architecture.
In Future Internet Assembly, 2009. Ź Page 13.

[238] Andree Toonk. Massive route leak causes Internet slow-
down. http://www.bgpmon.net/massive-route-leak-cause-

internet-slowdown/, June 2015. Ź Page 31.
[239] Brian Trammell. Properties of an ideal naming service. Internet-Draft,

September 2016. Ź Page 102.
[240] Brian Trammell. RAINS (another Internet naming service) protocol

specification. Internet-Draft, September 2016. Ź Pages 104, 106, 114,
and 383.

[241] Brian Trammell and Dominik Schatzmann. On flow concurrency in the
Internet and its implications for capacity sharing. In ACM CSWS, 2012.
Ź Page 273.

405

http://www.bgpmon.net/massive-route-leak-cause-internet-slowdown/
http://www.bgpmon.net/massive-route-leak-cause-internet-slowdown/

Bibliography

[242] Paul F. Tsuchiya. The landmark hierarchy: a new hierarchy for routing in
very large networks. In Proceedings of the ACM SIGCOMM Conference,
1988. Ź Pages 13 and 40.

[243] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent
route oscillations in inter-domain routing. Computer networks, 32(1):1–
16, 2000. Ź Page 235.

[244] Jean-Philippe Vasseur and Jean-Louis Le Roux. Path computation ele-
ment (PCE) communication protocol (PCEP). RFC 5440, March 2009.
Ź Page 277.

[245] Willem Vereecken, Ward Van Heddeghem, Didier Colle, Mario Pickavet,
and Piet Demeester. Overall ICT footprint and green communication
technologies. In International Symposium on Communications, Control
and Signal Processing, 2010. Ź Page 331.

[246] Jai Vijayan. Juniper discovers unauthorized code in its firewall OS.
http://www.darkreading.com/vulnerabilities---threats/

juniper-discovers-unauthorized-code-in-its-firewall-

os-/d/d-id/1323622, 2015. Ź Page 305.
[247] Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakrishnan,

Robert Morris, and Scott Shenker. Middleboxes no longer considered
harmful. In Proceedings of OSDI, 2004. Ź Page 284.

[248] Tao Wan, Evangelos Kranakis, and Paul C. van Oorschot. Pretty se-
cure BGP, psBGP. In Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS), 2005. Ź Page 307.

[249] Yuefeng Wang, Flavio Esposito, Ibrahim Matta, and John Day. RINA: An
architecture for policy-based dynamic service management. Technical
Report BUCS-TR-2013-014, November 2013. Ź Page 15.

[250] Dan Wendlandt, David G. Andersen, and Adrian Perrig. Perspectives: Im-
proving SSH-style Host Authentication with Multi-Path Probing. In Pro-
ceedings of USENIX Annual Technical Conference, June 2008. Ź Page 6.

[251] WikiLeaks. Vault 7: Working with MikroTik RouterOS
6.X. https://wikileaks.org/ciav7p1/cms/page 44957707.

html, 2017. Ź Page 305.
[252] Chris Williams. Bungling Microsoft singlehandedly proves that

golden backdoor keys are a terrible idea. http://www.theregister.
co.uk/2016/08/10/microsoft secure boot ms16 100/, 2016.
Ź Page 44.

[253] Tilman Wolf, James Griffioen, Kenneth L. Calvert, Rudra Dutta,
George N. Rouskas, Ilia Baldine, and Anna Nagurney. ChoiceNet:
toward an economy plane for the Internet. ACM SIGCOMM Computer
Communication Review, 44(3):58–65, July 2014. Ź Page 14.

406

http://www.darkreading.com/vulnerabilities---threats/juniper-discovers-unauthorized-code-in-its-firewall-os-/d/d-id/1323622
http://www.darkreading.com/vulnerabilities---threats/juniper-discovers-unauthorized-code-in-its-firewall-os-/d/d-id/1323622
http://www.darkreading.com/vulnerabilities---threats/juniper-discovers-unauthorized-code-in-its-firewall-os-/d/d-id/1323622
https://wikileaks.org/ciav7p1/cms/page_44957707.html
https://wikileaks.org/ciav7p1/cms/page_44957707.html
http://www.theregister.co.uk/2016/08/10/microsoft_secure_boot_ms16_100/
http://www.theregister.co.uk/2016/08/10/microsoft_secure_boot_ms16_100/

Bibliography

[254] John Wroclawski. The use of RSVP with IETF integrated services. RFC
2210, September 1997. Ź Page 244.

[255] Hao Wu, Hsu-Chun Hsiao, and Yih-Chun Hu. Efficient large flow detec-
tion over arbitrary windows: An algorithm exact outside an ambiguity
region. In Proceedings of the ACM Internet Measurement Conference
(IMC), 2014. Ź Page 269.

[256] Qinghua Wu, Zhenyu Li, Jianer Zhou, Heng Jiang, Zhiyang Hu, Yunjie
Liu, and Gaogang Xie. Sofia: toward service-oriented information centric
networking. IEEE Network, 28(3):12–18, 2014. Ź Page 153.

[257] Xilinx. Virtex-7 power estimator. https://www.xilinx.com/

products/technology/power/xpe.html. Ź Page 334.
[258] Abraham Yaar, Adrian Perrig, and Dawn Song. SIFF: A stateless Internet

flow filter to mitigate DDoS flooding attacks. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2004. Ź Pages 244 and 276.

[259] Xiaowei Yang, David Clark, and Arthur W. Berger. NIRA: A new inter-
domain routing architecture. IEEE/ACM Transactions on Networking,
2007. Ź Pages 13, 14, and 40.

[260] Xiaowei Yang, David Wetherall, and Thomas Anderson. A DoS-limiting
network architecture. ACM SIGCOMM Computer Communication Re-
view, 2005. Ź Pages 244 and 276.

[261] Kim Zetter. Secret code found in Juniper’s firewalls shows risk
of government backdoors. https://www.wired.com/2015/12/

juniper-networks-hidden-backdoors-show-the-risk-of-

government-backdoors/, 2015. Ź Page 305.
[262] Kim Zetter. New discovery around Juniper backdoor raises more

questions about the company. https://www.wired.com/2016/

01/new-discovery-around-juniper-backdoor-raises-more-

questions-about-the-company/, 2016. Ź Page 305.
[263] Fuyuan Zhang, Limin Jia, Cristina Basescu, Tiffany Hyun-Jin Kim,

Yih-Chun Hu, and Adrian Perrig. Mechanized network origin and path
authenticity proofs. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), November 2014. Ź Pages xvi,
279, 282, and 291.

[264] Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and
Daniel Zappala. RSVP: A new resource reservation protocol. IEEE
Network, 1993. Ź Page 277.

[265] Xin Zhang. Secure and efficient network fault localization. PhD thesis,
Carnegie Mellon University, 2012. Ź Page 281.

[266] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian
Perrig, and David Andersen. SCION: Scalability, Control, and Isolation

407

https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html
https://www.wired.com/2015/12/juniper-networks-hidden-backdoors-show-the-risk-of-government-backdoors/
https://www.wired.com/2015/12/juniper-networks-hidden-backdoors-show-the-risk-of-government-backdoors/
https://www.wired.com/2015/12/juniper-networks-hidden-backdoors-show-the-risk-of-government-backdoors/
https://www.wired.com/2016/01/new-discovery-around-juniper-backdoor-raises-more-questions-about-the-company/
https://www.wired.com/2016/01/new-discovery-around-juniper-backdoor-raises-more-questions-about-the-company/
https://www.wired.com/2016/01/new-discovery-around-juniper-backdoor-raises-more-questions-about-the-company/

Bibliography

On Next-Generation Networks. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), May 2011. Ź Pages 3 and 306.

[267] Philip Zimmerman. PGP user’s guide. http://www.pa.msu.edu/

reference/pgpdoc1.html, October 1994. Ź Page 40.

408

http://www.pa.msu.edu/reference/pgpdoc1.html
http://www.pa.msu.edu/reference/pgpdoc1.html

Frequently Asked Questions

In this section, we answer frequently asked questions regarding the design,
deployment, and operation of SCION. We start off with general questions, then
we address more technical and deployment-related questions.

1. General Questions

Do you use countries as ISDs? Doesn’t this cause a lot of problems?

We are currently looking into the best way to partition the Internet into ISDs,
so using countries as ISDs is only one possible option. Countries have the
advantage of providing a uniform legal environment, allowing misbehavior in
an ISD to be handled according to the legal framework of that ISD.

Thanks to the possibility of overlapping ISDs, ASes in SCION can obtain
additional guarantees by joining ISDs with functional characteristics (e.g., an
ISD for financial transactions). For more information, we refer to Chapter 3, in
particular to Section 3.6 on Page 56 for overlapping ISDs, and to Section 3.5
on Page 51 for ISD governance models.

Doesn’t SCION create opportunities for government intervention
and censorship?

No, SCION makes it decidedly harder for a government to censor networks. We
are not aware of an attack that a government could perform on SCION that could
not be performed on today’s Internet. On the other hand, many attacks that are
possible in today’s Internet do not work in SCION, for example route-hijacking
attacks — a SCION path cannot be diverted due to the separation of control and
data planes, and packet-carried forwarding state. Moreover, the transparency
properties of SCION reveal censorship actions, and the path control properties
enable end hosts to avoid certain ASes. Finally, peering links that traverse
to an AS in another ISD can allow communication to different ISDs without
traversing any core ASes that may censor communications.

409

Frequently Asked Questions

Why partition the Internet into ISDs at all? Shouldn’t the Internet
be a globally connected entity?

Even with SCION’s ISDs, the Internet remains globally connected — entities
anywhere in the world can communicate with one another using SCION. ISDs
provide isolation guarantees with respect to this communication, such that if
two entities in the same ISD communicate, no traffic between them will ever
exit the ISD. Additionally, ISDs guarantee that their internal routing decisions
for external destinations cannot affect the rest of the Internet, which would, for
instance, prevent an ISP in Pakistan from globally hijacking traffic to YouTube
(as happened in February 2008).

To learn more about the role of isolation, see Section 3.1 on Page 43.

How is SCION different from source routing?

In source routing, an end host knows the network topology and selects a path
through that topology to reach the destination. The path is embedded in the
packet header. Source routing does not scale to the size of the Internet because
the source would need to know the entire network topology to determine paths.
Source routing would not allow the receiver to control the path, nor does it
enable path control at the ISPs.

In SCION, an end host cannot freely choose the path, but merely select it from
a set of offered paths. Thus, the end host does not need to know the network
topology, although the offered paths provide a limited amount of network
topology information. So in contrast to source routing, source nodes in SCION
can combine up to three path segments (an up-segment, a core-segment, and a
down-segment) without requiring knowledge of the entire network topology.
Moreover, SCION allows ISPs, sources, and destinations to control the end-to-
end path. This approach is fundamentally different from source routing. See
Section 8.2 on Page 164 for more details on how to construct paths.

Does SCION need flow state to be set up on intermediate routers
before communication can occur?

No, SCION routers do not have any per-flow state. Senders can simply place
hop fields from a path in a packet header and send the packet to the destination
without any required setup. See Section 8.2 on Page 164 for more details on
how to construct paths.

How does SCION overcome network configuration errors?

Configuration errors can affect the control plane or the data plane. In the control
plane of today’s Internet, a misconfiguration of BGP can result in a route hijack,

410

and traffic not intended for the misconfigured AS takes a detour and is sent to
that AS. SCION’s secure routing architecture prevents such misconfigurations
from affecting other ASes; they simply reject incorrect announcements due to
the absence of correct cryptographic authenticators. Another misconfiguration
in today’s Internet is an incorrect BGP route filter, which can result in the hijack
of the internal IP address space. SCION’s control-plane structure also makes
such misconfigurations impossible.

In the data plane of today’s Internet, a misconfiguration can result in incorrect
forwarding tables. In SCION, ASes require correct hop fields to forward traffic,
which contain a cryptographic token that each AS verifies. So without the
correct hop fields, a packet cannot traverse the network and is dropped when it
enters the network. Since both an AS’s ingress and egress points are contained
in the hop field and are verified, packets can by design not be forwarded along
an incorrect path.

SCION’s PCBs reveal information about how ASes are willing to
route traffic (or some fraction of that information since only a
subset of all paths are shared at a given time). Are ASes willing to
share such information broadly?

ASes in SCION can decide which links they want to announce to which down-
stream customers. However, SCION provides more information about connec-
tivity of an AS than BGP currently reveals. Nothing about an AS’s internal
connectivity is revealed in SCION; and even in today’s Internet, an analysis
of BGP messages over a time period shows how an AS is connected to its
neighbors.

How does multipath communication conceal link failures from
applications? A loss of some packets on some path will still
introduce delays and retransmissions.

A SCION multipath socket will notice a lost packet after an RTT delay, based
on the lack of a (positive or negative) acknowledgment. The multipath socket
can then re-send the packet on a different working path, thus transparently
masking a link failure.

Moreover, SCION’s secure link revocation system (see Section 7.3) enables
rapid failover to a working path.

How is SCION different from OSPF, SDN, or MPLS?

SCION is used for inter-domain communication, to scale to the size of the
Internet. For intra-domain routing, each domain can use any protocol, such as

411

Frequently Asked Questions

OSPF, SDN, or MPLS-based forwarding. SCION’s hop fields may resemble
MPLS tags, but they have authentication and integrity protection.

How is SCION different from SDN?

Most current work in SDN is primarily applicable to intra-domain commu-
nication, while SCION is primarily concerned with improving inter-domain
communication, with minimal changes to the network within each domain.
SCION can make use of SDN to provide intra-domain communication. There-
fore, the two approaches complement each other.

While some emerging SDN projects attempt to provide inter-domain proper-
ties within the existing Internet architecture, such as explicit multipath support,
they lack most of the security and scalability properties offered by SCION.

How is SCION different from Asynchronous Transfer Mode (ATM)?

Of the many differences, we will describe some of the main ones. First, ATM
faces inherent scalability problems due to fundamental design decisions. For-
warding and label rewriting can lead to per-channel state at ATM switches. The
ATM cell headers can identify up to 224 channels at an ingress switch (the UNI
interface) and up to 228 channels at a core switch (the NNI interface). Increasing
the length of the corresponding header fields would enable support for more
channels, but does not address the root of the problem: per-channel state is
not a scalable solution, especially for core switches. Furthermore, enabling
multipath communication would further harm scalability, since one pair of hosts
would set up multiple virtual channels. In SCION, the required forwarding
state is embedded into packets, which in practice makes switches stateless for
forwarding. This design decision makes SCION extremely scalable with respect
to the end-point population. Furthermore, ATM’s design decision of having
short cells (instead of larger packets) in order to support real-time voice traffic
is obsolete in modern networks; full-length 1,500-byte packets do not incur
significant processing delays in practice.

Second, ATM was not designed with security in mind, which raises multiple
problems in an inter-domain deployment scenario. Quality of Service (QoS),
which is one of the most attractive properties of ATM, cannot be guaranteed
in an inter-domain environment where a channel traverses multiple domains
with conflicting interests. For example, channel setup signals could be modified
en route without being detected. Furthermore, a host has no control over
the selected path and cannot avoid potentially malicious domains. However,
the lack of path control is also a feature of other architectures and protocols
(e.g., IP). SCION treats security as an integral design principle, offering strong
security guarantees such as enforceable path control.

412

Would ISPs be happy with letting clients control their
communication paths?

A detailed discussion of this aspect is in Section 10.9, which describes how
ISPs can define and enforce their path policies. SCION ISPs can also control
the amount of bandwidth they let flow over a given link. With such bandwidth
control they can steer the traffic, and clients will automatically be diverted
toward paths with more bandwidth. Especially with the SIBRA extension (see
Chapter 11 on Page 243), the ISP has fine-grained and explicit control over how
much bandwidth is provided on each link.

2. Questions Regarding the Operation of SCION

What does a SCION address look like?

A SCION address is a 3-tuple of the form x I,A,e y, where I identifies the ISD,
A identifies the AS in ISD I, and e identifies the end host inside AS A. For more
details see Section 15.1.2 on Page 345. We note that, in contrast to a public IP
address, a public SCION address of a host H does not enable a host outside AS
A to communicate with H. Any host (in particular network adversaries) needs to
have at least one valid SCION path to the host’s AS in order to send packets to
H.

Does SCION require public IP addresses?

A customer of a SCION-supporting ISP would not need a public IP address, as
it can communicate with other SCION ASes via SCION paths. At the current
stage of SCION deployment, however, an AS without a SCION-supporting
provider ISP needs to have a public IP address in order to connect to other
SCION ASes using the current Internet as an underlay network.

Does SCION work for hosts behind NATs?

Yes. Section 10.3 on Page 201 illustrates how subnets behind NATs are con-
nected in SCION. Section 10.8 on Page 223 shows the packet headers for an
end-to-end example in which two hosts communicate over SCION.

Which ports does SCION run on?

The SCION protocol currently requires ports 30041 and 50000 to be open for
UDP packets. Port numbers may change in the future.

413

Frequently Asked Questions

What is the operating system that SCION runs on?

SCION currently runs on Ubuntu 16.04. For more information, take a look at
Section 10.4 on Page 211.

3. Questions Regarding the Deployment of SCION

Does the entire world need to switch to SCION at the same time,
or can SCION be incrementally deployed?

SCION can be incrementally deployed at ISPs, who can make use of the SCION
features to route traffic through the backbone of the Internet. This is done by
encapsulating SCION packets inside IP packets (transparently to end users). At
the edges, the encapsulation is removed and packets are routed as usual. If a
SCION path exists between two or more ISPs, encapsulation is not needed.

We discuss the deployment of SCION in Chapter 10 on Page 191. In partic-
ular, we illustrate various deployment scenarios in Section 10.1.1, talk about
deployment incentives in Section 2.5, and discuss incremental deployment
strategies in Section 10.1.2.

Can SCION run on existing network hardware?

Since SCION re-uses communication within an AS, no changes to the internal
network infrastructure are needed. The border routers, however, do need to
support SCION. We currently use standard PC hardware-based border routers,
but we believe that hardware routers can be upgraded to efficiently process
SCION packets. Sections 10.1 and 10.2 describe more details of SCION
deployment for ISPs and end domains.

Assume my ISP has deployed SCION. Do I have to use
TCP/SCION in my communication?

As part of SCION’s incremental deployment plan, you can still send legacy
traffic in terms of standard TCP/IP packets. The SCION-IP gateway will
automatically encapsulate your traffic if needed. The details are described in
Section 10.3 on Page 201.

I’d like to download and use SCION, what can I do?

Fetch the SCION codebase and its documentation from our GitHub repository
hosted at https://github.com/netsec-ethz/scion. For more informa-
tion, take a look at Section 10.4 on Page 211.

414

https://github.com/netsec-ethz/scion

What are the benefits to an ISP of deploying SCION?

An ISP can offer new services to its customers, for example: (a) high availability
through multipath communication; (b) secure paths that cannot be hijacked;
(c) client path control, ensuring that a packet will only traverse ASes that were
specified in the forwarding path (this can help with communication compli-
ance), and that sensitive traffic did not leave a jurisdiction; and (d) guaranteed
communication despite DDoS attacks. We discuss deployment incentives in
detail in Section 2.5 on Page 34.

My company would like to try out SCION. What are typical use
cases and how can we get started?

In the initial stages of SCION deployment, we believe that the early use cases
will encompass corporations wanting to secure a point-to-point connection
(where they control both endpoints) to achieve properties similar to a leased
line, but without the costs and time delays associated with setting up and running
a leased line. In this context, here are a few concrete use cases:

• Highly available communication: Many aspects of SCION provide
higher availability, especially when multipath communication is used.
SCION is immune to attacks such as prefix hijacking.

• Client path control, for example for compliance purposes: SCION
can guarantee what path each packet takes; in particular, which ISPs are
not traversed.

• Secret paths that can only be used by selected communication part-
ners: The cryptographic path protection enables path hiding even if an
attacker knows the network topology, thus making the path impossible to
DDoS.

• VPN link protection: A VPN link can be provided by the SCION
network, providing all the properties listed above for the end-to-end VPN
tunnel.

Companies in Switzerland can experience the benefits of a native SCION
deployment if they are a customer of a SCION-deploying ISP (e.g., Swisscom
or SWITCH at the moment) — in essence, one can communicate without any
reliance on BGP (therefore avoiding BGP vulnerabilities or weaknesses). As
additional ISPs deploy SCION, these properties will also become available to
customers of those ISPs.

For more information, take a look at Section 10.4 on Page 211.

415

Frequently Asked Questions

What properties can SCION offer if some of its links connecting
deploying ISPs are over the traditional Internet?

The properties that SCION achieves are weaker if some of the traffic traverses
the current Internet, but major benefits can still be achieved.

As our simulations reported in Section 13.9 (and independent research by
Peter et al. [199]) show, paths composed of shorter tunnels are much more
resilient to BGP hijacking attacks than the longer end-to-end paths.

Another major benefit is that SCION’s source-based path selection and
multipath routing enables relatively fine-grained selection of paths. For instance,
for traffic from Switzerland to Australia, the sender can select paths that go
eastwards via Singapore or westwards via the US.

Many of the properties continue to hold, though in weakened form depending
on the deployment density and network topology. With steadily increasing
deployment density, the properties will continue to strengthen as well, further
increasing deployment incentives in a virtuous feedback cycle.

416

Glossary

Autonomous System (AS). An autonomous system is a locally connected
network under a common administrative control, e.g., the network at ETH
Zurich constitutes an AS. If an organizational entity operates multiple networks
that are not directly connected through a local area network, then the different
networks are considered different ASes in SCION.

Beacon Server. Beacon servers enable SCION’s path exploration mech-
anism. Core beacon servers start beaconing (i.e., propagating path-segment
construction beacons (PCBs)‹) to allow the construction of path segments from
core ASes to leaf ASes. Upon receiving a PCB, a beacon server can choose to
register the learned path with a core path server and a local path server. The
beacon server then propagates the PCB to its downstream and peering ASes
and appends a corresponding routing decision for each of these ASes, known as
a hop field (HF). A beacon server located in a leaf AS only registers paths with
the local path server and the core path server, since PCBs are never propagated
upstream.

Certificate Server. SCION’s certificate servers keep cached copies of trust
root configurations (TRCs)‹ and AS certificates. Certificate servers are queried
by beacon servers when validating the authenticity of PCBs.

Certification Authority (CA). A certification authority is an entity issuing
digital certificates that bind information (most often a domain name) to a public
key. CAs have the responsibility of ensuring that the information-to-public-key
binding is correct. They also possess one or more key pairs used to sign and
verify certificates. The term certificate authority is used interchangeably.

Control Plane. The control plane is responsible for the discovery of network
paths, i.e., for the exchange of routing information between network nodes. The
control plane thus makes decisions about where traffic is sent and deals with
questions such as how routes are established, which paths exist, what quality
individual links offer, etc. After all routing-related tasks are completed, data
packets are forwarded in the data plane‹.

417

Glossary

Core AS. The ASes that manage an ISD are referred to as core ASes. They
are typically operated by large ISPs that in the current Internet are the main
operators in a given region.

Data Plane. The data plane (sometimes also referred to as the forwarding
plane) is responsible for forwarding data packets that end hosts have injected
into the network. After routes have been established in the control plane‹,
packets are forwarded according to these routes in the data plane.

End Domain. See leaf AS‹.

Fastpath. A router’s fastpath handles packet processing and forwarding on
the line card, and is thus performance-critical. See also slowpath‹.

Forwarding Path. A forwarding path is a complete end-to-end path between
two SCION hosts. A forwarding path is used to transmit packets in the data
plane and can be created with a combination of up to three path segments‹ (an
up-segment, a core-segment, and a down-segment). § 8.2 (Page 164)

IP Prefix. In an IP address, the prefix or network number is the group of most
significant bits that identifies the network or subnetwork. The remaining bits in
the IP address are used to identify hosts. For instance, in CIDR notation, the
IPv4 prefix 10.0.0.0/8 denotes that only the first 8 bits are used to identify
the network, and the remaining 24 bits are used to address hosts within the
network. IPv6 prefixes are analogous.

ISD Core. The ISD core is the set of ASes within an isolation domain (ISD)‹

responsible for handling inter-ISD routing, quality of service within an ISD,
and accountability management (e.g., disabling connectivity for misbehaving
ASes). § 3.2 (Page 47)

Isolation Domain (ISD). An isolation domain (ISD) is a hierarchical group-
ing of networks under a common organizational domain. Networks within an
ISD should share a common jurisdiction. Each ISD designates a set of core
ASes‹ that provide service to other ASes. § 3 (Page 43)

Leaf AS. Autonomous systems (ASes) that are not providers to any other
ASes are referred to as leaf ASes or end domains.

418

Log Server. A log server records the operations (most commonly certificate
issuance and/or revocation) of certification authorities (CAs)‹ in order to make
any misbehavior publicly visible. Operations are most commonly logged using
an append-only Merkle hash tree‹.

Merkle Hash Tree (MHT). Merkle hash trees, or just hash trees, are data
structures in which leaf nodes hold data objects and non-leaf nodes hold the
hash of their child nodes. One can prove that a data object is present in the hash
tree using a logarithmic number of nodes, and if the data is ordered in the leaf
nodes, one can also prove that a data object is absent from the tree.

Multihoming. An AS with more than one provider is referred to as a multi-
homed AS. Multihoming is thus the action of obtaining Internet connectivity
through multiple providers.

Name Server. Name servers in SCION are similar to DNS servers in today’s
Internet; they translate a human-understandable name into an address. End-
to-end paths can be looked up and created based on the (ISD, AS) tuple in
the SCION address‹ returned by the name server. The end-host address and
end-to-end path are then placed in the SCION packet header to enable delivery
to a given destination.

Packet-Carried Forwarding State (PCFS). Packet forwarding informa-
tion is contained in the packet — more precisely in its header — and may, for
example, specify the next hop on a path.

Path Segment. Path segments are derived from path-segment construction
beacons (PCBs)‹ and registered at path servers. A path segment can be any of
the following:

• up-segment (path between a non-core AS and a core AS in the same ISD)
• down-segment (same as an up-segment, but in the opposite direction)
• core-segment (path between core ASes)

Up to three path segments can be used to create an end-to-end forwarding path‹.

Path Server. End hosts register their up- and down-segments at path servers
within their ISD. End hosts can also query path servers in order to obtain path
segments to a destination. Path servers located in a core AS are called core
path servers. Beacon servers registers down-segments with core path servers.
The core path server, when it receives a SCION destination address as input
from a local path server, returns down-segments to the destination AS. If the

419

Glossary

destination AS resides within a different ISD, the core path server requests the
down-segments from the remote (destination) ISD’s core path server before
returning these paths to the local path server. All core path servers within a
single ISD run a consistency protocol to ensure a consistent view of intra-ISD
paths. Path servers located in non-core ASes are called local path servers.
Local path servers, when they receive a SCION destination address as input
(from a local client), return path segments between the AS where the local
path server resides and the destination’s AS. The local path server, as it cannot
independently resolve a full path across ISDs, may send queries to core path
servers.

Path-Segment Construction Beacon (PCB). Each core AS generates
inter-domain and intra-domain PCBs to explore inter- and intra-domain paths,
respectively. Each AS further propagates selected PCBs to its neighboring
ASes. As a PCB traverses the network, it assembles a path segment, which can
subsequently be used as a component for traffic forwarding.

SCION Address. Network-level address of a device using SCION. A SCION
address is a 3-tuple of the form (I, A, e), where I identifies the ISD, A identifies
the AS in ISD I, and e identifies the end host inside AS A. The end-host may
be identified using an IPv4 or IPv6 address, for example. § 15.1.2 (Page 345)

Slowpath. A router’s slowpath runs routing protocols and performs the net-
work management and flow setup. Slowpath operations are typically executed
on the router’s main CPU and are thus less performance-critical than fastpath‹

operations.

Ternary Content-Addressable Memory (TCAM). A content-addressable
memory (CAM) is a special storage device that stores the address together with
each data entry. When retrieving the data entry, all the addresses are searched
and the matching data entry is returned. In contrast, a regular memory stores a
contiguous address range. A TCAM is a special CAM where the address sup-
ports a third state for each retrieval address bit, where the third state indicates
“don’t care” — so an entry will match if all the stored address bits match the
query address, excluding the “don’t care” bits. The advantage of a TCAM is
that maximum-prefix-matching route table lookups can be performed efficiently.
The disadvantage of TCAMs is their very high energy consumption.

Trust Root Configuration (TRC). The trust root configuration (TRC) of
an ISD defines the roots of trust (i.e., public keys) for verification of control-
plane certificates, name resolution certificates, and end-entity certificates. The
TRC also contains the policy on how the TRC can be updated.

420

Abbreviations

AES Advanced Encryption Standard
ARPKI Attack-Resilient Public-Key Infrastructure
AS Autonomous System
ASE AS Entry
BGP Border Gateway Protocol
BGPsec BGP Security Extension
BR Border Router
CA Certification Authority
CDN Content Delivery Network
CIDR Classless Inter-domain Routing
CT Certificate Transparency
DDoS Distributed Denial of Service
DILL Dynamic Inter-domain Leased Line
DNS Domain Name System
DNSSEC DNS Security Extensions
DoS Denial of Service
DRKey Dynamically Recreatable Key
FIA Future Internet Architecture
HE Hop Entry
HF Hop Field
IAC IP Allocation Configuration
IANA Internet Assigned Numbers Authority
ICANN Internet Corporation for Assigned Names and Numbers
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
INF Info Field
IP Internet Protocol
ISD Isolation Domain
ISP Internet Service Provider
IsSP Isolation Service Provider
ITU International Telecommunication Union
IXP Internet Exchange Point
LIR Local Internet Registry
MAC Message Authentication Code

421

Abbreviations

MHT Merkle Hash Tree
MITM Man in the Middle
MPLS Multiprotocol Label Switching
MSC Multi-Signature Certificate
MTU Maximum Transmission Unit
NAT Network Address Translation
NCO Naming Consistency Observer
OPT Origin and Path Trace
OSPF Open Shortest Path First
PCB Path-Segment Construction Beacon
PCFS Packet-Carried Forwarding State
PKI Public-Key Infrastructure
PoP Point of Presence
PRF Pseudorandom Function
PRNG Pseudorandom Number Generator
PVF Path Verification Field
QoS Quality of Service
RAINS RAINS, Another Internet Naming Service
RIR Regional Internet Registry
RLD Registrant-Level Domain
RPC Remote Procedure Call
RPKI Resource Public Key Infrastructure
RTT Round-Trip Time
RZK Root Zone Key
SCP Subject Certificate Policy
SDN Software-Defined Networking
SIBRA Scalable Internet Bandwidth Reservation Architecture
SIG SCION-IP Gateway
SSP SCION Stream Protocol
TCAM Ternary Content-Addressable Memory
TCP Transmission Control Protocol
TLD Top-Level Domain
TLS Transport Layer Security
TOFU Trust on First Use
TRC Trust Root Configuration
TTL Time to Live
UDP User Datagram Protocol
VPN Virtual Private Network
ZK Zone Key

422

Index

A
Abbreviations 421
Address spoofing 280, 313, 320
Adversary model see Security anal-

ysis
AES 11, 297, 385
¨AESni speed 283
¨CMAC 353
¨ energy cost 334
¨GCM 353
Algorithm agility 27, 62, 315, 381–

383
Anonymity 35, 39
Ansible 218
Anycast service 41, 153–154
¨ instance selection 152
ARPKI 29, 89
AS see Autonomous System
AS certificate 74–76, 370
¨ for core ASes 76
¨ format 370
¨ issuance 76
¨ key compromise 76
¨ key loss 76
¨ revocation 74
¨ validity 76
AS entry (ASE) 120, 357
AS identifier 76, 345
AS interface 20, 22, 121, 122, 161,

224
¨ identifier 184
¨ inactive 151
¨ revocation 138, 141
AS key 74–76
AS management framework 215–

220
¨ local management service 216

¨SCIONLab coordination ser-
vice 216

ATM 412
Attack 6, 9
¨ address spoofing 280
¨ amplification 244
¨ availability 320
¨ beacon theft 309
¨ certificate forgery 7
¨ collusion 282
¨Coremelt attack 245, 322
¨ coward attack 280, 282
¨ creation of spurious ASes 308
¨Crossfire attack 245, 322
¨ denial of service see Denial of Ser-

vice (DoS)
¨ fake link announcement 310
¨flow redirection 279, 280
¨Heartbleed 74
¨ ICMP 7
¨ IP prefix hijacking 6, 32, 45, 327–

330
¨ kill switch see Kill switch
¨ link flooding 245
¨man-in-the-middle 7, 29, 45
¨ network attack 9
¨ out-of-order traversal 282
¨ packet alteration 282
¨ packet injection 282
¨ packet replay 282
¨ packet replication 323
¨ path detour 282
¨ path deviation 282
¨ path extension 315
¨ path hijacking 307
¨ path manipulation 307
¨ path preference 309

423

Index

¨ path selection 309
¨ path shortcut 316
¨ path splicing 316
¨ path truncation 316
¨ prefix hijacking 6, 32, 45, 327–

330
¨ router skipping 282
¨ segment replacement 317
¨ source address spoofing 313
¨ volumetric attack 245
Authentication 28, 40, 61–92
¨ beaconing 66, 77, 78
¨ certificates 67
¨ control plane 28, 68–83
¨ data 281
¨ name resolution 66, 83–86
¨ path segment 78, 81
¨ public-key infrastructures 65
¨SCMP 82
¨ source authentication 281
Autonomous system (AS) 17–19,

43, 417
¨SCION AS 19, 22, 417
¨SCION core AS 17, 18
Availability 8, 28, 31, 33, 34
¨ attacks 320

B
Bandwidth decomposition 246
Beacon (PCB) 18, 19, 21, 28, 47,

120, 420
¨ authentication 27, 66, 77
¨ propagation see Beaconing
¨ selection 23, 129–132
Beacon extension 359
¨ announcement extension 359
¨ routing policy extension 360
Beacon server 20, 21, 24, 417
Beacon store 129
Beaconing 18, 19, 21, 22, 24, 47,

63, 72, 77, 119, 123, 127,
147

¨ authentication 66, 78

¨ core beaconing 127
¨ inter-domain beaconing 21
¨ inter-ISD beaconing 24, 80, 127
¨ intra-domain beaconing 21
¨ intra-ISD beaconing 22, 23, 78,

123, 125
¨ non-core beaconing 125
BGP see Border Gateway Protocol
BGP policy 231–237
¨ comparison with SCION 231–232
¨ consistent export routing pol-

icy 235
¨Gao-Rexford 234
¨ next-hop routing policy 234
BGPsec 6, 61, 65
Bitcoin 31
Block cipher 11, 29, 292
Blockchain xvii, 31, 94
Border router 20
Border Gateway Protocol (BGP) 5,

34, 45, 195, 307
¨ prefix hijacking 6, 45
¨ routing policies 7
¨ stability issues 10
Botnet-size independence 243, 244,

246, 249, 276
Business-critical applications 272

C
CA see Certification Authority
Catastrophe prevention 67
CDN see Content Delivery Net-

work
Censorship 318, 409
Certificate
¨AS cert. see AS certificate
¨multi-signature cert. 90
¨ subject cert. policy (SCP) 89–92
¨ registration 91
¨ subject cert. policy (SCP)
¨ registration 91

Certificate forgery 7
Certificate server 20, 417

424

Index

Certificate Transparency (CT) 87
Certification Authority (CA) 7, 10,

29, 89, 417
¨ compromise 29
CMAC 385
Collusion attack 282
Compliance 32
Configuration files 369
Consistency service 146
Content delivery network 112, 331
Content-centric networking 13
Control message protocol see

SCMP
Control plane 9, 21–24, 119–160,

417
¨ authentication 28, 68–83
¨ failure resilience 146
¨message format 355
¨ service discovery 151
¨ services 146
¨ beacon service 147
¨ certificate service 150
¨ path service 148, 150
¨ time synchronization 159
Core AS 17, 417
Core path (SIBRA) 247, 250–259
Coremelt attack 245, 322
Coward attack 280, 282
Critical infrastructures 32, 272
Cross-signing 64
Crossfire attack 245, 322
Cryptographic algorithms 381
¨ agility 381
¨ asymmetric 385
¨ post-quantum 386
¨ symmetric 384

D
Data authentication 281
Data plane 9, 25–27, 161–177, 418
¨ efficient path construction 174
¨ path construction 177
¨ path format 162–164

Default gateway 208
Denial of Service (DoS) 5, 7, 243,

245, 280, 282, 291, 320
¨ application-layer attack 320
¨Coremelt attack 245, 322
¨Crossfire attack 245, 322
¨ defense 30, 39, 243, 320
¨ distributed DoS 244, 280
¨ link-flooding attack 245
¨ packet replication attack 323
¨ SIBRA 30, 39, 222, 243–277, 322
¨ volumetric attack 245, 321
Deployment 12, 36–38, 191–239
¨ challenges 37
¨ current status 196
¨ distributed deployment 191
¨ early deployment 192
¨ end-domain deployment 199
¨ full deployment 191, 196
¨ global deployment 191
¨HTTP(S) proxy 199
¨ incentives 12, 34–36
¨ incremental 36
¨ intermediate deployment 192
¨ IP tunnels 194
¨ local deployment 196
¨ new AS 218
¨ overlay tunnels 194
¨ proxy-based 199
¨SCION islands 194, 196
¨SCION network 38
¨SCIONLab 220–223
¨Testbed 38
¨VPN-based 200
Diamond contributions 39–42
¨ absence of kill switches 325
¨ algorithm agility 381
¨ AS-level anycast service 153
¨ authentication infrastr. 61
¨ control-plane PKI 77
¨ DRKeys 291
¨ efficient forwarding 161
¨ end-entity PKI 86
¨ ISD coordination 93

425

Index

¨ isolation domains 43
¨ OPT 279
¨ SCION path policy 230
¨ SCION-IP gateway 201
¨ SCMP 82, 155
¨ secure path revocation 138
¨ SIBRA 243
¨ TRC 68
DiffServ 244
Discovery service 151
¨ configuration 374–376
¨ configuration file 379
DNS 104, 202
DNSSEC 6, 48, 66
DoS see Denial of Service
DPDK (Intel) 197
DRKey protocol 29, 39, 157, 291–

297, 325
¨ retroactive 294
Dynamic inter-domain leased line

(DILL) 243, 271

E
ECDSA 385
ECIES, curve25519 385
Ed25519 353, 385
Efficiency 10
Encapsulation 194, 202, 205
End domain 418
End-host address 345
End-to-end principle 11
Energy consumption 331–337
Ephemeral path (SIBRA) 247,

261–268
Equipment 197
Extension header 342

F
Fake link announcement 310
FAQ 409–416
Fastpath 246, 249, 261, 268, 418
Financial services 31

Flow redirection 279, 280
Forwarding loop 323
Forwarding path 9, 25, 342, 346,

418
¨ creation 25
Forwarding plane see Data plane
Forwarding policy 9
Forwarding table 4, 26
¨TCAM 5, 420
Frequently asked questions 409
Future Internet architecture 13–15
¨ power consumption compari-

son 331

G
Gateway see SCION-IP Gateway

(SIG)
Global isolation domain 56
Global trust 11, 40
Glossary 417
Governance models 51

H
Hardware 197
Heartbleed 74
Heterogeneous trust 11
Hidden path 30, 33, 137, 320, 321
HMAC-SHA256 353
Hop entry (HE) 121, 358
Hop field (HF) 18, 27, 122
¨ current pointer 344
¨ expiration time 27
¨ format 348
HORNET 39
Host structure 179
Hot-potato routing 235
Hybrid addressing 25, 342, 343,

346

I
IANA 51, 153
ICANN 44, 50–52

426

Index

ICING 280
ICMP 6, 7, 24, 29, 155
Identifier squatting 95
IETF 51, 52
Incentives 12, 34–36
¨ businesses 35
¨ end users 34
¨ governments 36
¨ ISPs 35
Incremental deployment 36
Info field (INF) 120, 315
¨ current pointer 344
¨ format 347
Information-centric networking 13
Infrastructure 19, 36
¨AS see AS
¨ authentication 61–92
¨ beacon server 20, 21, 24
¨ border router 20
¨ certificate server 20
¨ discovery service 151
¨ internal router 20
¨ ISD see Isolation Domain
¨ name server 20
¨ path server 20, 21, 24
¨SIBRA service see SIBRA
¨ZooKeeper see ZooKeeper
Intel DPDK 197
Interface 20, 22, 27, 121, 122, 161,

224
¨ identifier 184
¨ inactive 151
¨ revocation 138, 141
International Telecommunication

Union see ITU
Internet Assigned Numbers Author-

ity see IANA
Internet Corporation for Assigned

Names and Numbers see
ICANN

Internet Engineering Task
Force see IETF

Internet exchange point (IXP) 52,
168, 198

Internet of Things (IoT) 30, 244
Internet Protocol (IP) 4
Internet service provider 9, 43
IntServ 244
IP see Internet Protocol
IP allocation config (IAC) 204, 205
IP prefix 418
¨ hijacking 6, 32, 45, 327–330
¨ longest-prefix match 26
IPv7 see SCION
ISD see Isolation Domain
ISD coordination 93–100
¨ conflict resolution 100
ISD identifier 345
Isolation context 109
Isolation domain (ISD) 17–19, 40,

46, 43–57, 418
¨ bottom-up governance model 51
¨ coordination 48, 93–100
¨ core 17–19, 47, 47, 418
¨ discovery 97–99
¨ global isolation domain 56
¨ governance models 51–56
¨ isolation 50
¨ isolation service prov. model 54
¨ naming consistency 50
¨ nested 56
¨ organic transition model 51
¨ overlapping 56
¨ related work 13
¨ sovereign authority model 52
¨ spurious 96
¨ top-down governance model 52
Isolation principle 43, 43–46, 50,

51
¨ authentication 44
¨ governance models 51
¨ hidden isolation 57
¨ routing 45
¨ translucent isolation 57
¨ transparent isolation 57
Isolation service provider 54–56
ISP see Internet Service Provider
IsSP see Isolation Service Provider

427

Index

ITU 53
IXP see Internet exchange point

K
Kill switch 41, 45, 62, 325–327

L
LAP 39
Latency 34
Leaf AS 418
Leased line 243, 271
Link failure 24
Link-flooding attack 245
Log server 87, 419

M
MAC see Message auth. code
Man-in-the-middle attack 7, 29, 45
Maximum packet length 343
Maximum transmission unit

(MTU) 120–122, 156,
184, 202, 219, 354, 358

¨ configuration file 379
¨ discovery service 151, 374, 375,

379
¨TCP/SCION 187
Merkle hash tree 88, 419
Message auth. code (MAC) 27, 384
¨ algorithm agility 315
¨ brute-force attack 315
¨ efficient verification 334
Mininet 214
Mobility 34
Monopoly model 44
MPLS 24, 277, 411
Multi-signature certificate 90
Multihoming 33, 419
Multipath communication 6, 9, 24,

30, 34, 179

N
Name resolution 18, 48, 66, 101–

118
¨ assertion 106
¨ assertion context 111
¨ authentication 66, 83–86
¨ consistency 86
¨DNS 104, 202
¨DNSSEC 6, 48, 66
¨ interoperability 202
¨ isolation context 109
¨ query 113
¨RAINS 48, 104–118, 202
¨ registrant 113
¨ registrar 113
¨ shard 108–109
¨ validation 84
¨WHOIS 102, 106, 113
¨ zone 108–109
Name server 20, 419
Naming Consistency Observer

(NCO) 50, 103, 116–118
Naming Information Model 106
NAT 228, 229, 413
Nested isolation domain 56
Network capabilities 244, 276
Network configuration errors 410
Network neutrality 35
Non-registered path 30, 137, 320,

321

O
Oligopoly model 45
OpenFlow 15
Operation 191–239
OPT 31, 39, 279–291, 292
¨DRKey key derivation 294
¨ origin validation 286
¨ origin validation and path

trace 289
¨ path trace 287
OSPF 411
Out-of-order traversal 282

428

Index

Overlapping isolation domain 56
Overlay deployment 194, 416
¨ security analysis 327

P
Packet see SCION packet
Packet alteration attack 282
Packet attribution 279
Packet header see SCION packet
Packet injection attack 282
Packet replay attack 282
Packet-carried forwarding state

(PCFS) 18, 26, 27, 34, 38,
419

¨ energy consumption 332, 334
Path see SCION Path
Path attack
¨ fake link announcement 310
¨ off-path adversary 8
¨ on-path adversary 8
¨ path detour 282
¨ path deviation 282
¨ path extension 315
¨ path hijacking 307
¨ path manipulation 307
¨ path preference attack 309
¨ path selection 309
¨ path shortcut 316
¨ path splicing 316
¨ path truncation 316
¨ segment replacement 317
¨ source address spoofing 313
Path combination see Path resolu-

tion
Path compliance 279
Path construction 174–177
Path control 8, 32, 33, 309
Path detour attack 282
Path deviation attack 282
Path exploration 18, 21, 47, 119,

119–132, 230, 231, 235,
236, 238

Path lookup see Path resolution

Path registration 18, 21, 47, 72, 79,
119, 119–132, 148, 361,
377, 383

¨ core-segment 149
¨ down-segment 148
¨ inter-ISD 127, 128
¨ intra-ISD 123, 126
¨message 73, 78, 362
¨ up-segment 150
Path resolution 18, 47, 132–138,

164–174, 183
¨ caching 137
¨ path combination 19, 25, 164–174
¨ path lookup 19, 23, 72, 73, 79, 82,

132, 132–138, 183, 184,
383

Path revocation 24, 41, 78, 138–
146, 383

¨message 361, 362
¨ revocation token 359
Path segment 19, 24, 360, 419
¨ combination 25
¨ core-segment 21, 26
¨ down-segment 21
¨ selection 23
¨ up-segment 21
Path selection 23, 129–132, 309
Path server 20, 21, 24, 419
Path transparency 8, 32
Path validation 39, 279, 280, 281
Path-seg. constr. beacon see Bea-

con
PCB see Beacon
PCFS see Packet-carried forward-

ing state
Peer entry (PE) 121, 358
Peering link 22, 25
Peering path 168
PKI see Public-key infrastructure
PoliCert 89
Post-quantum cryptography 386
Power consumption 331–337
Prefix see IP prefix
Privacy 39

429

Index

Prometheus 220
Property 8
¨ anonymity 35, 39
¨ availability 8, 28, 31, 33, 34
¨ deployability 12
¨ efficiency 10
¨ global trust 11
¨ heterogeneous trust 11
¨ path control 8
¨ path transparency 8
¨ privacy 39
¨ scalability 9, 10
¨ transparency 8, 36, 62
¨ for paths 9, 32
¨ for trust roots 10
¨ trust agility 10, 28
Protection
¨ business continuity 31
¨ critical infrastructures 32
¨financial services 31
¨ governments 32
Protocol number 182, 187, 345
Pseudorandom function (PRF) 29,

283, 285, 292, 384
Pseudorandom number genera-

tor 382, 384
Public-key infrastructure (PKI) 65,

61–92
¨ARPKI 29, 89
¨ control-plane 65, 68
¨ certificates 75
¨ keys 75
¨ end-entity PKI 66, 86
¨ name-resolution PKI 66, 83
¨PoliCert 89
¨TLS 10

Q
Quality of Service (QoS) 34, 244

R
RAINS 48, 104–118, 202

¨ assertion 106
¨ assertion context 111
¨ isolation context 109
¨Naming Consistency Observer

(NCO) 116–118
¨ naming information model 106
¨ protocol 114
¨ query 113
¨ registrant 113
¨ registrar 113
¨ shard 108–109
¨WHOIS 106, 113
¨ zone 107–109
Re-creatable key see DRKey proto-

col
Recovery 67
Replicated services 322
Reservation token (SIBRA) 259,

261
Resource exhaustion 324
Revocation
¨AS certificates 74
¨ paths see Path revocation
¨ trust roots 28, 64
Router on a stick 193, 227
Router-skipping attack 282
RPKI 6, 61, 65
RSVP 277
RT see Reservation token

S
Scalability 9, 10
SCION address 341, 342, 345, 420
¨AS identifier 345
¨ end-host address 343, 345
¨ ISD identifier 345
¨ size 345
SCION AS monitoring 220
SCION codebase 211
SCION daemon 179, 183
SCION disadvantages 37–38
SCION dispatcher 179, 179
SCION equipment 197

430

Index

SCION extension 39
¨ header 342
SCION gateway 37, 223
SCION hardware 197
SCION islands 194, 196
SCION packet 223, 341
¨ common header 314, 341, 342,

343
¨ extension header 342
¨ header 223, 341, 343
¨maximum packet length 343
¨ payload 343
SCION packet extension 349
¨AS-level anycast extension 354
¨MTU extension 354
¨One-hop path extension 351
¨Path transport extension 351
¨SCMP extension 355
¨Security extension 352
SCION path
¨ core path see SIBRA
¨ ephemeral path see SIBRA
¨ format 162–164
¨ forwarding path 346, 418
¨ hidden path 30, 33, 137, 320, 321
¨ lookup 132–138
¨multipath 30
¨ non-registered path 30, 137, 320,

321
¨ peering path 168
¨ revocation 138–146
¨ short-lived path 30
¨ shortcut path 169
¨ steady path see SIBRA
SCION path policy 230–239
¨ beaconing control 232
¨ explicit path policy 232
¨ hop-field encryption 233
¨ secrecy 237
SCION software 211
¨Github 211, 214
¨ how to contribute 214
¨ how to get started 211

SCION Stream Protocol (SSP) 179,
188

SCION-IP Gateway (SIG) 201–
211

¨ encapsulation 202, 205
¨ IP allocation config (IAC) 204,

205
¨ scenarios 208
SCIONLab 220–223
¨ coordination service 216, 217
SCMP 24, 29, 82, 156, 155–159,

291
¨ authentication 82, 156
¨DRKey key derivation 296
¨ goals 155
¨message classes 156
¨message format 363
¨ types 156
¨ verification 29
SDN see Software-defined netw.
Security analysis 301–330
¨ availability 320
¨ censorship 318
¨ confidentiality 318
¨ security goals 302
¨ software 305
¨ surveillance 318
¨ threat model 304
Segment routing 14
Self-certifying identifiers 28, 65,

94, 284
Service anycast 41, 153–154
¨ instance selection 152
Service discovery 151
¨ configuration 374–376
¨ configuration file 379
Shard (RAINS) 108–109
Shortcut path 169
SIBRA 30, 39, 222, 243–277, 322
¨ core path 247, 250–259
¨ ephemeral path 247, 261–268
¨ SIBRA service 249, 257, 260, 262
¨ steady path 247, 259–261

431

Index

¨ traffic monitoring and polic-
ing 268–272

SIG see SCION-IP Gateway
Slowpath 261, 420
Software security analysis 305
Software-defined netw. (SDN) 15,

24, 33, 411, 412
Source address spoofing 313, 320
Source authentication 279–281
Source routing 4, 410
SSP see SCION Stream Protocol
Steady path (SIBRA) 247, 259–

261
Subject certificate policy (SCP) 89–

92
¨ registration 91
Surveillance 318

T
TCAM 5, 10, 332, 420
TCP/SCION 185
Time synchronization 159
TLS 6, 7, 66
¨PKI 10, 61
¨ trust roots 10
TOFU see Trust on first use
Traffic engineering 33
Tragedy of the commons 245
Transmission Control Protocol

(TCP) 181–183, 185
Transparency 8, 36, 62
¨ for paths 9, 32
¨ for trust roots 10
TRC see Trust root configuration
Trust

¨monopoly model 44
¨ oligopoly model 45
Trust agility 10, 28, 62
Trust on first use (TOFU) 63
Trust root configuration (TRC) 17,

20, 28, 47, 63, 68–74, 369,
420

¨ control 10
¨ creation 68
¨ cross-signing 64
¨ dissemination 63, 72
¨ format 369
¨ lifetime 74
¨management 68
¨ quorum size 70
¨ revocation 28, 64
¨ transparency 10
¨ update 62–64, 69, 73
¨ update frequency 73
¨ verification 64

U
User Datagram Protocol

(UDP) 181–183

W
Web browsing 33
WHOIS 102, 106, 113

Z
Zone (RAINS) 107–109
ZooKeeper 147, 322, 375

432

Index

433

	Foreword
	Preface
	Overview
	Introduction
	Today's Internet
	Goals of a Secure Internet Architecture
	Future Internet Architectures

	The SCION Architecture
	Control Plane
	Data Plane
	Security Aspects
	Use Cases
	Incentives for Stakeholders
	Deployment
	Extensions
	Main Contributions

	Isolation Domains (ISDs)
	Why Isolation?
	The ISD Core
	Coordination Among ISDs
	Name Resolution
	ISD Governance Models
	Nested Isolation Domains

	SCION in Detail
	Authentication Infrastructure
	Overview
	Control-Plane Authentication
	Name Authentication
	End-Entity Authentication

	ISD Coordination
	Motivation and Objectives
	Announcing and Discovering New ISDs
	Local Resolution of Conflicts

	Name Resolution
	Background
	Name Resolution Architecture
	Naming Information Model
	The RAINS Protocol
	The Naming Consistency Observer (NCO)

	Control Plane
	Path Exploration and Registration
	Path Lookup
	Secure Path Revocation
	Failure Resilience and Service Discovery
	AS-Level Anycast Service
	SCION Control Message Protocol (SCMP)
	Time Synchronization

	Data Plane
	Path Format
	Creation of Forwarding Paths
	Efficient Path Construction

	Host Structure
	SCION Dispatcher
	SCION Daemon
	Transmission Control Protocol (TCP/SCION)
	SCION Stream Protocol (SSP)

	Deployment and Operation
	ISP Deployment
	End-Domain Deployment
	The SCION-IP Gateway (SIG)
	How to Try Out SCION
	SCION AS Management Framework
	Deploying a New AS
	The SCIONLab Experimentation Environment
	Example: Life of a SCION Data Packet
	SCION Path Policy

	Extensions
	SIBRA
	Motivation and Introduction
	Goals and Adversary Model
	Design Overview
	SIBRA Core Paths
	SIBRA Steady Paths
	SIBRA Ephemeral Paths
	Priority Traffic Monitoring and Policing
	Use Cases
	Discussion
	Further Reading

	OPT and DRKey
	Introduction
	OPT Problem Definition
	OPT Design Overview
	OPT Protocol Description
	Dynamically Recreatable Keys (DRKey)

	Analysis and Evaluation
	Security Analysis
	Security Goals
	Threat Model
	Software Security
	Control-Plane Path Manipulation
	Data-Plane Path Manipulation
	Censorship and Surveillance
	Attacks Against Availability
	Absence of Kill Switches
	Resilience to Path Hijacking
	Summary

	Power Consumption
	Modeling Power Consumption of an FIA Router
	Simulation

	Specification
	Packet and Message Formats
	SCION Packet
	Control Plane
	PCB and Path Segment
	Path Management Messages
	PKI Interactions
	SCMP Packet

	Configuration File Formats
	Trust Root Configuration
	AS Certificates
	Discovery Service Configuration
	Router, Server, and End-Host Configuration

	Cryptographic Algorithms
	Algorithm Agility
	Symmetric Primitives
	Asymmetric Primitives
	Post-Quantum Cryptography

	Bibliography
	Frequently Asked Questions
	Glossary
	Abbreviations
	Index

